Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
14602 08364 87643 86859 21797 87974 70223 99886 25418 74012 46412 93415 03546 88480 81449 77976 05846 38636 84814 31381 80126 37303 49287 81543 23903 48184 15009 14283 60962 56172 58550 06145 42921 62665 06967 82208 75790 05877 76867 98900 71541 06151 38471 51807 24659 36272 04676 08490 13718 16777 45117 66293 27931 36273 25230 35159 18720 96741 70313 45441 76278 83858 54592 80714 31127 62302 15280 35589 80687 96069 91641 98524 40832 93783 89051 59637 22458 79009 68064 43520 33040 85568 58472 67049 03201 77845 98365 22197 38268 96104 98200 83850 94840 26803 29858 42612 82347 97902 40708 62627 89612 99177 92669 64383 36418 27533 26277 32531 50066 57318 49739 48692 66938 35633 53003 49275 59062 02644 46818 08284 85673 36898 26796 45134 69775 25633 62472 57464 99704 60089 11374 78947 55691 55825 58078 62103 61423 98027 78273 86113 60608 11824 27824 89631 18536 57597 56836 28596 48639 51296 48714 59043 64059 09748 84224 44920 54206 20970 30560 90896 86324 39487 55405 00174 32047 06637 65991 57308 18972 95889 73164 36009 07210 83150 80446 31961 90959 42086 98096 20636 25057 64426 82176 40100 76552 05278 98610 98832 01260 53442 12247 08531 45331 26723 00925 41934 71807 92240 94535 15623 12189 11743 39076 97843 42997 11923 85729 41308 87332 79725 04908 41021 41440 82658 25331 17080 26276 14114 98079 22495 64061 63672 85657 75996 79851 12420 76060 19851 28096 53258 21833 02674 44201 36216 04134 87241 21093 38768 21798 83297 10780 61137 05397 05376 50915 46618 56304 55608 16356 26880 10756 31533 95734 92287 28916 58915 93009 87204 08934 49550 54037 30316 26011 84085 18132 59933 96462 19827 94624 04308 66778 23552 64429 76949 27687 29326 06605 96930 53219 21309 49918 34202 64766 41573 49404 79910 20148 22913 87930 41701 27672 46656 02757 64039 85194 25482 37106 73517 44186 11226 16714 49170 98794 27699 51402 17786 99904 28495 61636 74220 94201 79808 30086 26705 88235 68239 78196 67167 37480 33615 67738 66534 60399 26795 27381 95051 77506 92489 04249 67594 75430 77064 40489 13978 95971 61362 74826 74272 50173 18509 69133 19112 57376 96729 59986 95013 09286 27156 35235 94682 59034 56646 35559 52329 35240 05591 81032 63979 81074 50731 22687 32790 18319 32966 19074 39357 36435 90167 37826 37032 06618 14993 82220 72232 20868 37698 42742 29752 56045 33948 73646 03082 62938 57631 94517 89711 80321 98669 16837 11447 74022 65834 95543 59729 00979 94556 05593 65933 98309 79739 43525 96692 97365 33572 54024 74204 62802 68340 81480 21547 56637 04242 46554 32990 27315 02195 47739 69304 23766 21654 87920 78080 34474 03422 25943 39036 51535 77459 53171 34330 59720 95702 95049 43876 50539 89870 37668 65654 61304 54280 79324 61023 39188 53661 07084 25032 30290 55963 98348 81735 93700 90172 47407 04504 40557 29120 17013 61336 98111 97301 14934 85173 98792 03682 95524 69210 94265 99513 86278 87207 94498 61143 39400 38804 31821 97832 08362 19832 49990 84561 49469 17628 18249 19846 48422 31342 70394 08554 71876 17254 68833 69707 44007 59088 93650 69303 48074 63318 56668 78126 52979 79487 40510 54554 64832 45516 62662 52378 03511 58017 64538 53612 04229 67607 25537 26303 44090 99220 02111 07347 93658 97416 91825 10301 93515 96699 22419 58191 55824 16825 65872 41333 90896 83119 77463 00137 58745 71783 59836 32926 45658 80210 52059 28743 65751 22299 43689 25168 87537 48763 13833 91127 85484 92445 95212 34708 16581 38631 63224 35971 21900 20357 50003 04760 53153 38729 83485 63519 24265 08231 51469 55100 87926 27037 90679 75578 37161 72327 00830 32064 31887 20596 83685 25517 50479 92968 07121 58554 66333 25509 94190 68267 49425 64538 37186 84032 92877 86942 36698 10323 64516 45485 65684 34524 83442 39123 58523 59742 21583 08318 25086 62618 30265 55344 89792 76142 91768 89609 55674 97463 95894 97959 93443 20705 41526 39994 55545 94774 63191 68382 15230 06175 82624 74169 30607 86824 85330 57093 33716 46860 22143 20895 44580 32453 35796 93633 10278 08627 12476 72993 68998 67061 58390 96605 39107 58909 01327 37349 33207 52610 17221 23675 97203 16700 81713 84909 74363 27626 46714 21572 94382 02557 41966 00684 87440 57197 01606 76086 23270 88598 15728 33746 75218 82972 06945 62072 09306 48505 31953 47228 98295 73166 08092 93445 60744 07523 64909 68330 25078 72553 20721 73184 18646 92458 84177 38310 81788 52472 80819 43330 06891 81679 04648 62491 02458 60822 94685 34985 82167 55118 36529 60257 78935 72067 88929 18318 83977 44269 35336 15057 10875 37232 60475 52555 84635 82188 51900 24398 55750 33904 26561 35988 39267 53495 82363 49855 78844 16235 74734 55970 35814 44372 18181 67061 03251 64937 12856 38918 45028 92562 96120 15714 59880 37286 19101 00310 70472 37372 48261 49573 37452 17119 91955 94686 98524 69672 51997 86461 32500 64837 00218 65651 48373 81893 80032 58263 99370 67403 32999 95871 22021 18028 50385 60926 00219 88341 49724 57073 54282 23636 76385 04460 55018 17741 30129 60050 62785 95834 16675 62936 91552 22252 24261 04654 97967 33305 25209 24491 95415 95088 02484 29801 93081 86293 01256 41320 60015 06023 05469 63471 14192 06603 39396 79684 36574 51395 94205 72703 10176 97607 79521 69905 84124 04106 99989 13603 62722 64234 56836 56367 19512 63617 74433 81334 36334 62980 51859 47519 67394 05955 39462 60127 28324 51900 40420 65869 10243 33707 37310 73272 18821 40615 43662 97991 38342 26023 80527 33123 20764 40305 78039 44518 99785 88617 01974 91095 29904 13715 05319 70149 50482 03763 04826 87667 74806 25151 82582 53642 04152 80300 12568 02381 66847 90483 12221 37820 82330 03629 18999 03839 50217 27142 91941 79569 64361 85711 38231 99708 51916 04122 64759 99834 37402 15072 54687 86716 31761 91981 69006 33626 46425 06801 73104 00654 32378 12836 88324 80018 44214 52548 68531 66376 29205 90371 01669 52143 41363 70525 36328 47798 80496 99828 33307 27200 56280 55508 42171 97899 77315 18015 02819 96448 65188 28834 72044 08718 93538 73300 75097 15209 52118 88405 82247 61360 35855 95616 10347 52868 58917 58683 49392 75991 93769 66456 14085 42872 35242 40694 20401 61840 89592 68878 87143 32731 88565 62025 62512 67197 28453 37499

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 10/23/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.