Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
54239 94304 84015 28916 20866 58802 22382 43232 14661 92189 02910 84582 66806 32166 18744 54780 28112 57549 39691 25657 39333 77328 45027 40628 26476 44731 81319 41251 21115 96288 45226 18793 05702 15893 91320 90789 83880 23862 64896 02605 75798 91005 59782 54006 38419 77677 01156 50708 10837 97851 53356 80951 84586 08172 52690 17055 98954 22026 65254 41985 61296 48599 69740 00915 92345 56939 65251 77784 96528 65022 04113 96867 57272 53810 49686 49332 57323 06318 59179 44804 24055 71673 91459 87929 99784 54177 39869 79932 37080 27373 90033 45185 19078 73101 02677 82767 04794 45568 21433 43026 99434 60405 05660 29141 49707 08730 88248 23687 64141 96214 58437 40195 58391 07141 69627 99716 25554 93469 72189 32384 31481 88896 71283 03976 35089 47922 09662 67477 33674 09906 75492 39640 33224 88136 35161 02553 43730 83889 91091 30195 99500 25490 64555 40004 04471 32379 03482 69438 02521 04172 15277 77537 72781 34722 24627 71483 49952 51184 56320 58168 69609 78076 43051 20752 38523 26341 58240 20227 29964 07412 73842 21981 04023 72270 43159 47358 52918 75513 08651 50220 71308 64410 34755 18514 51606 92974 65691 00830 04292 61014 08275 57965 03225 78204 39736 39485 55955 53145 40524 85289 99036 07424 52125 52171 18337 14681 59872 65380 94359 64667 00759 95187 72542 52310 96251 58442 58580 91778 10099 45143 38736 55536 31154 69994 25147 38416 81172 48965 26147 46672 47638 00864 41569 12051 41566 73889 83066 30846 80322 97196 19418 27967 95430 57462 46847 45997 65388 00445 84329 59259 73478 57548 93906 12876 90580 97379 26000 86835 82985 02318 89722 85048 45205 70077 48189 49417 57788 40260 38835 98891 70131 45932 18720 93537 08289 90173 34849 23594 07791 47649 19477 23541 71451 91167 10429 11158 52179 43245 96408 51587 60798 52668 87306 46398 98851 96052 09521 47647 16418 04410 26268 96941 94926 14711 82890 89503 54962 46443 77171 63227 89087 03177 54650 12750 19644 99128 28930 28507 81576 10718 26996 60798 30237 53139 59523 08846 74201 81915 16190 34866 33080 19463 85992 03121 20332 06659 02554 43989 51074 79398 14440 43022 74898 70156 80471 55011 33681 34555 90033 43049 44396 02923 08391 42591 06927 56858 47000 50518 36881 30790 58821 39200 23399 38544 58631 95556 11972 24901 68335 85121 12249 42162 87281 41102 30852 51710 87568 78449 29188 50572 34364 32908 06264 22984 31216 25093 06493 16949 90360 49539 52514 45804 28039 88773 03001 14779 84810 52371 35473 72562 70860 41023 54112 87860 36317 35594 22572 50964 66563 11188 21790 00305 02547 76210 32804 74026 86096 36427 44560 86537 30229 84033 86727 30080 14469 11710 87510 01292 05154 51691 56460 52767 00753 39821 92289 69619 02175 04622 15683 71043 08084 81354 27112 36879 35208 51079 89643 59175 63658 04720 36753 18747 07232 32126 05144 86743 08736 36137 92551 51208 60288 71640 40556 68641 48639 09639 42405 40562 25479 26311 75812 15072 02753 17072 60778 13419 72972 35640 42404 81555 54525 58095 98697 66704 61994 71943 73390 18920 01464 90177 33749 17653 90837 90345 53388 23309 05143 78603 20084 53814 46855 78786 68581 86177 41197 46467 38415 83050 56463 08019 56713 44292 49323 24678 46017 83533 35140 81608 57090 29734 83280 01957 26729 53750 37426 85929 60581 19895 60891 74837 40951 62501 06926 40172 59618 87482 14040 97664 75645 98896 26306 46340 98195 50510 38676 32595 94338 22359 67294 39246 21869 22311 44807 99602 87117 12627 40680 36518 27759 61526 06506 26467 20632 19748 46320 88595 14546 22112 11908 98787 88096 14083 23127 28729 32475 03335 13210 09969 59285 36307 99082 22984 33352 99775 76672 11235 30537 47406 41225 20237 20547 51326 32615 61617 74751 78679 05659 02178 98990 93192 25425 77962 91391 81736 87551 33309 25177 05891 63550 84927 56483 78503 71129 10945 57164 65252 69498 64983 72614 11214 79684 15211 04570 92420 29842 08413 18934 92420 25569 59048 78577 03847 45217 63314 01156 54980 60202 38208 41928 61303 80320 85592 01557 02070 24059 81254 58931 21867 13911 88970 28973 57175 96683 99565 45454 87932 88812 94980 68805 14095 46676 37329 18930 57203 61908 82967 33016 86940 81705 21548 48351 72697 54146 40091 10132 60135 98499 12038 04276 72745 00536 11321 15239 38415 32847 51424 08823 40989 00150 49441 39990 96830 09605 15146 85674 56384 66123 65047 02596 30741 92687 61456 10073 43197 75653 76547 97833 05821 35072 81420 58826 21010 19998 60162 47038 08058 28802 48912 60303 54714 54482 99924 48113 93749 54979 70624 44435 04515 48488 37679 25520 39507 33770 36057 92717 75929 35465 23087 80284 92255 74404 67525 88205 69788 62922 63616 39994 19229 25171 70156 65518 32234 42431 74552 08800 57978 23425 81888 60838 04721 99628 28988 17414 66364 45582 23475 61909 74018 24208 07834 73112 72560 57120 48479 58037 22204 19933 49810 09732 25053 62580 93279 90093 76672 54624 01450 37675 42642 55567 27064 00507 60127 10166 67099 93903 64437 68745 01835 83273 40587 32507 58915 91941 99863 23844 02407 33949 81382 81656 46869 71878 78656 81655 96407 99653 91154 81685 08744 50363 00865 92030 84275 29068 73859 70729 80136 70611 86851 43887 49262 22436 78763 50986 04453 52396 27288 15203 07433 81565 50448 38715 82916 42055 33162 23019 57665 59824 78805 14239 24558 62491 85773 73440 31648 12145 49041 71942 96225 63164 86731 11631 43882 45022 91671 70271 72575 70101 07960 71820 41684 66510 32527 81737 86078 35890 41697 27299 55178 36231 42751 42911 77018 89681 50490 40421 47307 15364 88798 04429 43491 87187 17201 12602 63820 16655 82435 80987 91404 60683 95004 34321 83282 54410 30743 01345 84479 69007 57384 35118 67071 94497 86115 58327 94249 47560 48142 33598 09376 04350 96255 58815 50058 58305 31387 87426 87199 02961 54181 73758 89067 39766 41545 43331 10355 10888 48222 88166 06244 57032 33350 87103 71469 00249 12023 51110 04375 51753 31853 93597 95982 44727 74537 25726 44053 92142 82414 76727 92146 69565 10032 39210 93687 22974 00708 39474 01026 01570 88089 32823 79499 15588 22720 23878 46497 19112 23600 11887 35521 17884 54749 61041 85250 02121 26770 95786 53599 04324 23407 21132 56786 82092 53116 67968 33391 25934 25618 63376 33420 92082 53469

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 6/14/2021.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.