Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
68962 31807 57743 55272 80426 20484 47497 43649 67369 28431 42335 28106 32091 04993 25465 65263 85975 72272 61835 66530 76048 45436 37193 80910 36546 78030 22151 02819 65472 32291 61246 04895 26163 74462 87003 95811 73849 95101 58999 03088 07218 54393 27925 80907 44977 52467 24644 42921 27416 24706 74262 20069 42969 62057 35182 43388 79776 56348 63173 51823 02247 70598 00427 25045 52626 34330 89628 41257 77549 63882 13007 60012 79610 07723 56410 30021 93923 16762 98360 21970 89683 39663 24116 86328 96730 43155 64739 36164 57112 57347 61153 54954 01645 46038 53208 29399 51477 02034 93742 07236 44653 67454 87644 80046 87672 79047 55916 91074 32053 38504 24736 68036 75900 07770 39521 80932 90458 29356 03987 24862 71680 71651 44216 27835 16789 99238 97712 83583 25841 68200 27470 09371 28285 46440 61036 28816 34527 58989 54567 79690 12493 58317 81899 46743 89192 19652 48603 19506 77276 61284 31054 75109 26604 89887 40486 86093 00806 70821 12064 53220 78843 23453 18937 63289 81570 41467 11307 71946 23301 38174 80489 11495 88368 16826 47973 23717 32684 65933 79487 17674 10310 79565 24062 52528 25010 02677 78090 45351 06820 01412 74390 03937 13607 58418 96269 84614 57634 93158 16584 75061 57119 07227 61806 02114 12802 54657 01083 64582 09502 37238 60298 91062 42684 24824 61138 22746 70022 00649 85152 21236 87955 31638 62815 01357 33259 63720 87590 88972 09601 42140 54991 03786 39107 56773 26644 67170 38921 12434 19354 34965 22770 24192 19161 55295 27525 37685 20407 51386 64765 74426 89797 29371 97338 02122 55464 11107 40924 29984 21025 91986 90596 29037 04652 23747 72388 77437 03128 22291 19849 30782 80911 00488 75612 17422 84200 25998 17956 58774 79992 04074 12365 14634 20150 85382 88093 53490 30461 98811 39726 47834 24700 09283 53745 94474 43693 00569 60088 59845 19381 83099 08712 50326 63879 26779 71156 07550 83541 18795 67104 28715 18021 46435 15947 11898 04336 04895 13345 26367 65932 30094 32791 07897 26739 56487 52172 79075 50240 99875 05332 94621 03531 65222 58634 11692 46384 79461 12524 85203 45309 49312 28092 88133 12616 44094 78634 56842 70480 03533 26219 61378 40001 70581 23244 00796 55267 49223 39002 23467 02416 87292 11245 72389 83701 84282 22741 55504 06549 24159 02842 41005 97628 33174 54045 77655 41904 62675 03554 40092 46707 96923 79840 99148 30794 85897 14209 17158 38409 03117 67361 68274 78347 28445 80952 83776 88016 55907 54157 22387 22501 26499 45236 65582 68624 86005 98090 37903 84009 67805 93830 52272 61142 00688 27333 80301 16436 41668 08813 47606 04290 33792 90373 54121 56158 88958 17578 19407 44602 95719 06008 52967 72364 52106 42830 49558 86422 23431 13351 09505 17057 25107 52587 84008 41910 30454 21824 45463 75051 03517 10178 82767 81036 56875 61163 21633 13973 34456 24247 69905 81583 19345 31419 87868 34263 66604 98749 83559 79147 61077 52952 33084 19172 00207 82950 25925 17136 01846 16436 35259 84765 37071 21432 13264 96771 87990 32857 11435 29919 30564 04086 25897 27085 42410 83514 67715 86323 35619 16118 58209 74924 14568 70019 49265 68479 58730 88046 68648 14945 30490 64295 90314 23703 07953 45698 29723 79621 42763 58579 64152 82119 42908 60219 78006 09233 80538 15419 33133 06669 24776 98063 64133 01877 99528 17677 98674 43104 66301 70997 02801 63462 32009 18527 51252 69989 81790 86102 22769 57709 36817 91454 20409 48700 37112 95771 16859 56150 49355 80258 24748 73427 99699 47707 91957 88132 31583 49051 21935 21172 88545 34930 19010 90812 22029 32255 58699 01749 24206 45769 83027 59162 85779 84608 20831 07785 78802 13866 33080 95964 64485 31157 83184 64720 26014 68177 32305 61814 26358 17265 59674 80806 91086 82969 07899 25121 16175 58606 53280 97107 00826 27823 01121 12104 05273 91165 06043 37500 33601 17631 17295 56798 41553 21241 49066 58675 69345 62597 75803 51048 99478 75446 52516 00133 39551 18240 60094 94512 30072 50703 75620 34189 77275 35390 67678 44660 10925 64250 16670 15970 67137 10189 60127 66777 96185 03634 63020 33416 95318 34092 13075 83958 66567 76717 41085 57277 99563 43868 66220 27111 79345 61673 66344 91120 19178 71595 73322 84956 18358 56988 93338 21320 45032 94667 52202 54027 44006 31462 65670 67068 69557 85788 34747 88670 43251 74204 66006 30364 36748 62976 16902 51043 79619 44640 66076 46024 92160 39562 08677 61116 43199 22505 76670 31675 32913 74188 84146 46673 00640 57849 97641 37756 57689 20809 31443 93309 45155 21032 67906 97518 16731 78692 02764 94433 46520 52729 15442 77027 61846 42417 64370 01265 01072 13925 07292 25160 96404 51878 46583 72839 81712 35921 99558 23605 25336 42279 93788 26000 87903 70326 87407 36865 05137 94138 14432 85406 95671 39065 55067 62254 93862 83285 31024 33528 07602 84374 25829 79899 01131 30863 30138 60650 02848 18802 12047 02740 38126 53325 12408 14867 87121 75210 65137 26529 67590 12441 42530 52087 42698 56773 25576 79829 53831 65291 99266 86031 78414 86976 72907 74019 12718 14266 25436 38232 79672 59618 75732 53287 61682 57072 77927 88036 58434 88811 41718 44635 69717 36726 77684 22601 03226 58978 67594 07878 07380 91559 59719 86898 29134 74856 89149 85643 96790 05213 23103 33710 27810 11493 31239 53369 61629 56643 80970 73632 17467 64252 57778 69309 77141 70117 10519 25073 92880 98805 21745 24526 20133 65215 03009 64254 75386 01139 15182 92897 18973 06829 13762 75208 62887 27553 19191 81113 03593 55165 12163 99780 79844 54659 53939 78675 55488 15739 31660 87628 27284 29379 28655 07897 57714 89383 19761 46224 32795 18951 91629 73906 44891 22239 88040 90851 00526 60923 80215 14643 53199 55761 62131 94604 61191 13157 70829 50858 70383 76718 31731 38391 22065 03826 28949 36117 85750 67190 00600 60934 16986 81416 59117 06795 40169 54568 36561 08765 56355 64727 54935 32084 76071 61558 21497 86230 77133 92870 49071 63984 87451 56179 01358 05488 92847 75269 63252 87310 69865 01759 36151 36508 43585 41660 58269 69689 70433 06941 49950 57075 45996 92091 83977 11561 37835 75681 80889 02783 43295 46925 29290 96177 72317 57245 31165 17042 55255 96834 72188 39602 75685 96215 17039 01071 28216 52806 29712 40713 01307

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 1/16/2021.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.