Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
94211 90685 33484 02174 23589 20641 14344 72413 99419 58509 29670 64643 33107 51317 94630 64610 73659 33299 62771 42927 15490 02459 96330 44131 31238 22134 61547 00748 29576 47555 48983 72354 38025 77408 18822 09639 10765 30402 71193 43468 61451 46825 41478 98945 21021 15112 20626 34474 20512 23404 00464 05824 98869 36110 44011 55188 35763 95473 80790 25248 09397 48130 27139 98236 79323 96676 31527 59999 94255 76223 44863 89058 24875 55967 15811 70673 21655 65749 11099 35906 97663 47615 60838 25679 36375 32382 28827 79843 24492 41199 07869 51237 09750 12109 40086 44748 83733 51612 62226 81380 89683 11228 75980 87310 55316 89059 43293 07954 50634 56351 06675 47029 70736 09058 34518 30617 43631 44402 91401 96222 63050 62438 33410 06840 46261 92616 28447 90015 16877 45342 01542 01906 12674 88543 05168 16347 18398 49226 14549 38911 23583 40044 47979 45971 05358 10857 12128 48763 36264 25293 72359 82450 17063 62314 48038 20182 34554 42776 32849 12162 44382 80992 40102 49703 78854 61293 73052 54296 79747 39593 20205 91670 56126 69953 75635 10854 67153 56137 84294 08242 29897 28182 12326 16651 52155 43954 42378 19389 90254 15715 93915 89314 31872 61685 68530 52895 03847 82602 20258 79281 04988 63286 50885 94356 63889 99203 30268 19805 21745 48025 41640 37179 40157 06193 51926 76951 33950 10481 07055 32585 28986 64557 52272 99595 44973 90547 77452 39608 03279 05595 87409 69427 59745 23429 97215 75093 62497 80918 52504 50949 34760 89643 74792 63699 82667 12450 31785 41475 28075 65020 32694 87895 66376 42428 48544 21132 49309 70703 57491 37966 92774 83399 15132 02859 09644 23147 49819 62007 67575 68225 82968 82409 71823 84118 74375 15927 73053 00080 92529 88347 00154 10698 09919 13445 18048 02451 23355 32048 10505 05278 99274 76095 87958 69136 44052 57703 20309 65565 99323 83223 94747 14247 62284 92313 98559 34575 31014 21988 26941 22207 74781 95692 15812 50638 29357 37359 99627 97753 17332 10469 94187 97397 93424 82120 04455 15934 14793 12082 57366 53808 36351 66866 59639 72110 31078 58783 80593 44137 35333 10007 59954 31956 19166 41637 40674 87966 81631 87762 26738 81459 71099 34520 65979 50185 30568 84164 57891 76916 67980 44123 86439 91001 51528 41061 77876 94939 29974 59946 83549 15932 77958 08109 87718 82452 66311 04305 40365 25806 57368 92779 15006 06692 25281 82326 91506 66767 01330 10355 63890 05207 44238 31949 73155 80270 35480 33932 65082 35859 99598 73926 73054 53082 49513 44419 25859 26821 56839 61822 80510 67284 47191 80536 80057 26579 20503 32012 36394 50268 96335 88816 38078 53933 84192 53687 83136 24739 78831 73605 36884 47994 80574 78849 14731 58715 40625 47062 90000 18186 31376 92312 26735 15525 41726 79156 37515 94244 97390 61703 66267 03813 06209 47672 96079 76219 28468 87461 82010 27533 72206 88205 08904 84471 13528 52839 74206 35953 41916 44163 95767 09673 30547 73901 44663 73654 31599 16766 03005 62813 96567 49523 46751 30527 21575 15049 53518 25189 17690 11396 35399 91777 06231 05856 96770 98413 39084 74021 17104 87923 44014 63847 58785 54408 94977 84713 99921 44795 07433 21491 92152 85410 58659 73599 43469 33534 33060 19071 26022 53969 92484 03618 08931 20597 71531 54685 16105 42946 97868 20521 09050 17750 37542 34239 94680 05514 65290 02875 58133 32074 59854 21454 20582 15160 24291 12054 22049 15961 31288 87864 29213 15683 93474 42250 68229 17117 58730 62815 82536 71194 30505 70464 15669 28558 13126 83464 19075 16118 82112 06509 84924 38615 79487 44782 03919 05189 34088 43015 48113 80932 06884 49553 78718 63457 61285 05418 78919 84461 58453 58372 11685 36284 77619 01973 02585 23472 61390 39647 47596 39343 86068 73743 45918 67545 56956 19599 57788 08621 28675 44605 87288 31571 50473 32262 90162 50416 36542 71248 06625 25756 61326 69480 19180 91339 79835 93175 35425 05618 72961 30913 95868 28316 17783 82700 06742 21987 82888 74031 97814 78581 48677 94950 05198 71005 52681 64116 79169 29684 59870 17864 16973 44127 57973 24266 20644 89486 77779 22194 79812 78121 38461 85387 79516 36160 17882 11506 33021 05067 47907 36201 39623 68194 34719 72175 67469 02357 04131 73241 61364 54386 71895 23391 75588 42697 39019 50853 31703 83848 12076 67156 01372 44104 48518 31194 14165 16002 26989 38285 90378 19909 42637 34236 98839 30586 27427 54404 39725 28753 95450 87762 52373 77649 13242 65954 48094 24593 95090 77367 67982 27551 23350 06185 65730 06695 93755 96459 15440 20966 85730 41163 44439 69639 57705 96260 91086 18881 67424 19764 87591 53319 17262 35803 67820 52595 24534 23678 00117 92939 16810 31932 45105 73719 52227 17407 38511 69016 64798 09307 98966 04177 34730 98265 60830 57382 83734 50398 31992 86205 95336 46379 76692 79178 60192 45489 23331 32352 46398 74688 97281 50860 94805 42675 78699 75479 39331 78946 85339 34194 52271 97863 80368 18760 14614 87715 05174 86262 11351 24776 37179 85682 51789 12373 72654 09456 14865 44946 34531 70043 19458 97110 05212 01481 19699 37719 84386 85954 25288 68927 71841 05354 46801 90252 75271 17840 66007 87639 43098 59406 31179 47518 22274 70437 77406 95873 41102 47278 71906 62298 17044 18793 84339 69067 89534 47927 82118 45190 77794 58270 50722 65476 63640 85620 39010 14600 99300 54542 29533 76161 40225 79936 33844 46749 02901 93595 12813 75002 47659 95769 21941 25671 86495 31728 81667 68686 15874 93324 72686 93212 74546 45552 56259 46717 26362 78117 19526 99030 68080 81992 45818 31408 62182 50980 09971 50595 94685 08282 98636 27886 57952 58054 55594 63190 58510 61973 52066 74091 49854 40796 82028 09912 90269 00925 82523 90775 25632 85971 78972 71668 97236 53313 55487 31502 74593 75661 50185 87179 13251 67622 75498 32650 37606 37258 63489 02979 48713 62652 36161 63407 57102 93468 00770 23413 40585 77514 70140 75776 27075 12307 07974 60639 02393 21631 99165 54571 43083 57105 45111 84628 74225 24741 84026 67419 52244 36506 36253 73163 72730 86891 74577 14759 03241 54465 19536 61841 41122 28443 59735 79844 96316 60248 97156 94068 99176 40072 17476 78738 33277 98437 85374 71066 93230 32762 64844 10317 67493 58923 64511 01868 46185 87814 07940 06272

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 11/23/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.