Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
62363 95755 45939 13057 52445 30807 49890 98885 26919 36511 70402 49484 63722 85308 71396 29337 00651 70053 55565 86620 24432 36820 65933 48511 84778 42721 12416 41507 33453 38712 23392 36730 88334 77414 22253 20248 22474 45916 28978 88379 78165 23595 86688 68009 05998 64925 13210 61903 28929 07290 77644 19018 31338 03797 01918 29814 73096 81087 87357 46568 28622 22150 66243 28684 50950 74136 78377 13010 60789 81166 72642 09147 60587 42149 33565 19761 73591 93590 32881 85900 07914 17403 06094 57301 45593 73727 54040 87704 56653 58735 69451 55168 38171 87448 88513 07381 78337 01546 67435 31968 45515 02183 84005 51814 02311 07798 64157 45367 44627 36927 33532 91953 65733 16017 94041 42092 45322 12237 25426 12806 63575 91291 11823 07934 40225 00231 93328 63445 98619 75270 42553 17748 54778 74592 66194 07006 31461 36167 31590 85449 97231 60562 18291 70686 30510 18757 94610 14016 08649 84950 19199 95744 21986 94379 67599 45490 12909 26125 83811 87503 39922 10932 56855 10974 66701 64017 22332 65348 76164 42880 88990 80635 09526 30121 90280 12725 30370 41248 60927 13700 13700 57493 38485 27145 60011 83624 89903 08461 34348 30754 63088 70179 30370 24158 63467 52272 59411 36083 55546 17464 64543 43563 89480 71548 59639 11227 52626 08695 93438 99115 46115 81767 38599 95490 86408 97632 05775 74651 31860 37472 82667 79743 34284 02099 98089 30572 15513 82265 11031 56417 68961 53979 24724 53841 86185 98813 25695 69505 08454 49220 47838 07982 03301 58843 61472 64566 66094 97832 87404 83085 46596 73148 35990 38717 00525 73886 71203 45800 66119 41580 99688 90641 65700 65518 84831 89338 32232 03056 85818 70582 60888 24926 21697 83476 85609 85553 60444 30346 80668 18368 33022 24552 87235 56114 72444 73302 64934 76167 77837 85466 68410 70841 03506 04383 48889 42708 72991 65680 80745 24901 18133 80082 13053 26437 43139 41221 46163 02522 13639 58455 33255 49866 70754 14676 06902 26995 70152 49123 30637 99566 46118 65195 75510 10674 00610 63266 21654 76171 17327 98492 84848 04974 00766 63629 68075 44380 40289 96842 38090 50375 99183 14519 26979 82951 28725 69082 58723 26416 07240 31804 00759 34707 04168 00614 40544 01703 69125 32916 87119 56534 45965 03399 97667 83900 11841 86849 29078 69377 41272 65964 14514 69736 95201 64161 64966 08248 35061 03396 95821 95002 61833 86970 78425 72218 80115 07345 16639 84553 87177 78957 48409 74421 87029 96025 72327 02303 29483 15367 99188 92056 74213 64211 28560 01231 79817 73007 50341 16382 17886 33241 71324 73379 12056 80246 66759 02721 02081 01015 56918 99849 32889 67015 08650 20458 68646 91996 61953 00808 31818 14808 81529 03040 67236 07210 33353 85485 31157 06683 86228 97978 05325 74244 38354 02170 36034 77258 68888 16842 98194 97249 14506 88217 84388 62714 70965 85269 18939 06937 19669 20041 96970 50797 79227 92955 48468 10585 82018 63123 27346 30813 75753 43660 25503 42029 50038 22001 11892 43630 87936 05207 96576 11671 42529 90281 19797 31681 38481 59480 66034 56473 98602 00627 03065 88959 95406 52426 46033 89960 27680 74769 46508 11021 22041 44055 06546 52221 59500 73497 17754 44987 27028 58440 25355 59906 94111 46666 17243 39538 14322 33715 38055 56228 51875 83190 28227 94918 33191 72077 88056 60962 23464 61049 66769 12934 28216 89787 76578 20446 19866 97284 31747 46955 89288 67166 12653 57580 22378 97997 54850 51913 01613 98599 63129 21828 32614 08356 50581 34301 95708 42534 02662 39215 22495 62588 66253 02176 97404 71480 63724 62328 84259 33985 31994 15158 77843 22010 86598 20318 80455 84900 10743 34428 03480 44758 69379 68898 93944 16749 48253 72731 86082 54421 17976 40343 77899 20011 23086 44372 32730 79760 96109 93492 05807 24227 96622 15222 95816 13597 75312 63744 21466 47999 63048 52711 23046 62816 84931 13062 88989 48995 99367 75834 07437 98365 62123 79973 42799 73943 15393 05148 37318 05253 01859 29563 37632 08633 03754 12771 46334 32552 06923 03483 98537 27920 89888 72385 63438 43399 37910 69946 70876 45719 82048 09235 62898 64988 63228 73728 70321 65008 21298 50127 14295 38582 09098 86166 32861 27830 31516 73430 32520 69501 09554 55161 64793 65286 69390 59076 27780 77131 56440 55175 92728 47544 74422 38559 55591 44918 49416 37235 13591 33832 18927 44935 66784 70373 45951 78927 44618 22441 58033 62824 57501 15068 11330 34402 73358 00724 79677 78408 19197 54637 68647 84374 07671 95098 54613 29430 88640 28778 48812 86117 25733 21040 86405 55198 97910 91251 40544 23470 26028 33093 61429 46579 24400 59878 40377 56832 77357 74859 98876 96007 40814 66543 02656 73167 68830 29004 00747 47475 65171 07194 89541 36001 59871 67257 01856 46539 10799 91841 21000 35420 30217 00409 19831 90320 36343 94556 24819 38076 29916 28314 05111 77498 95757 03473 86592 37181 29330 89887 90948 58317 88308 70791 99728 02510 69132 13108 43406 84585 08576 62768 15446 30402 10309 65016 11363 59670 96455 09727 92782 93757 84160 01716 76507 88505 87149 56053 48580 92038 42295 18373 03341 27582 61176 10193 07498 01271 06640 99217 89180 34960 94366 94657 52007 24042 19429 67538 14149 20256 07861 96016 72390 39503 93213 35689 91189 94653 18117 14907 16744 53366 60852 55087 16052 20895 86901 16026 40976 47907 25520 66210 17302 63289 71294 78132 58806 31964 10703 48600 06315 37703 73687 44049 91769 90936 10201 70859 27283 61569 91785 70660 19210 36788 38124 40653 07205 03881 68608 78914 28287 58044 78897 54712 05898 35197 42484 03820 63970 69793 37255 48826 65987 77634 97056 44450 79043 63684 88248 47849 62912 54876 11279 13938 84103 57930 27237 15697 54926 42165 09421 89483 97556 47308 19896 05348 33092 16309 11061 62344 95623 53154 52211 08843 71288 05676 81094 87844 62338 73369 80480 07286 76203 40199 79722 35366 39547 32417 81316 20843 37339 01371 12465 38358 76908 31322 01642 58742 77010 72250 80152 44331 81890 97672 08694 69275 00344 87454 28925 64856 69779 35619 40022 89794 45279 83164 00241 25568 13668 75873 53486 96717 32569 47126 80866 16164 94468 25712 77260 55521 15777 68645 52880 40404 50897 18973 59831 70747 31280 88591 43676 66111 29490 66056 19998 35999 48267 49396 75960 75169

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 11/21/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.