Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
63952 32535 54711 98161 56623 58553 89573 79831 77848 21169 47842 91670 07397 62333 59920 73722 31382 04952 13337 94646 50079 29452 23066 40777 10735 75340 26832 30186 65383 67769 05428 51748 53652 69100 28024 29198 10583 55460 22484 10200 99439 18311 70673 80403 69518 91009 28775 02509 38965 00367 72600 80333 02587 43217 67904 47866 64662 87973 65691 83336 96754 01194 22537 48272 20525 99146 45893 51568 15545 24364 64404 38541 52109 47216 23216 05000 49046 92464 04294 36301 56534 90826 71732 71416 63909 55542 42062 91992 32481 83931 79575 36412 53346 83959 16624 38864 30195 25799 98943 93395 87132 18390 55957 42982 01483 11009 96096 93587 61606 19821 27104 53224 49712 79454 01356 96020 49669 19551 86167 51278 79816 66339 59108 17540 50782 69191 28313 01648 48288 52183 77798 82806 40971 90664 37770 01646 13185 12814 79938 74288 22824 26207 37829 31401 84126 69376 52098 82269 75492 88370 40844 03851 72293 38323 94915 54845 04687 10013 98230 14749 40430 81423 73084 47924 92685 94309 50466 92659 52842 55757 65367 75228 48324 64747 77094 48958 25401 63716 14584 58288 57004 15123 46716 27835 75537 03007 77622 76452 30688 59550 66999 56293 72244 16645 75426 16876 57901 82452 34671 94145 86079 42963 43007 24532 53731 88564 85524 84020 39161 65601 79438 52203 09829 52936 44410 01355 55172 63516 97853 10485 44408 70929 75246 04404 09355 60974 75448 17786 52242 08217 31010 84230 78519 77556 03485 50326 54671 50785 03744 14711 91031 78155 37285 92139 49593 54934 74550 02536 76823 22975 46233 85070 61473 97274 63595 37207 17390 17534 63776 78778 91335 24728 80108 41039 95788 62662 37425 80734 66767 04535 72379 19158 46636 04502 78750 06220 91920 74241 77761 09504 06117 84509 13388 28332 97507 91709 72672 32828 61973 89450 31035 27979 90803 85112 22589 42696 03512 01406 35451 43881 05646 02937 32054 75484 71602 47769 94459 22571 52436 63983 94669 00382 08676 51244 89942 68396 68137 07360 43101 69392 08728 79848 67849 93513 66273 42493 99079 67327 67314 96912 88189 67892 86932 99118 23394 61816 31553 11079 75035 69318 46765 77284 65898 53297 50128 26303 66521 33386 88986 97352 15508 25022 23281 91852 64844 03504 33368 49996 50203 93057 52821 52307 86265 80893 26250 46202 87024 56277 92115 97559 11105 74586 90533 67270 32073 46372 96096 12813 33749 51428 75679 14810 30518 77845 71258 28588 12645 86079 07714 60746 16586 98010 25656 70713 20302 11008 39226 97315 63569 36993 18912 10332 93293 66499 99364 87065 33820 57734 12206 13898 82252 50647 43843 12858 28755 05986 18281 93180 01876 69361 04937 27868 38853 60312 51446 55258 80926 86362 41484 05581 93654 82089 77569 52524 12224 73182 88884 89795 11763 65507 64082 32684 02654 59168 09101 44623 50845 87569 29978 88754 23163 81477 40660 04487 57628 58087 95815 09065 58762 35081 48649 24125 17904 69690 33712 27260 58523 22761 74717 28585 06527 47817 17350 72294 85580 05115 87079 63228 37412 00719 71973 18434 67131 50551 30509 43728 13537 69461 24388 35260 44435 85288 76346 06072 76945 77921 52965 37665 22815 43361 72489 56559 58737 82787 37634 35855 21656 16615 93402 21799 29081 23561 09890 85345 24404 04707 90109 98717 47205 72559 02790 36968 28570 65110 40200 04548 11400 84906 00953 86865 95726 63106 97824 26843 09019 48543 90560 26491 01506 21791 43694 73461 66479 34221 09356 92613 85608 72072 35086 22577 99257 45505 96647 17313 01792 02671 55837 72677 61895 68772 43302 77983 67879 10122 66348 92561 97997 23211 41753 47327 15756 48768 53581 71339 90228 10824 35994 43363 41368 80770 81063 68435 10317 66425 71582 79421 54725 26097 38881 63585 69056 07642 45636 14145 29901 12533 93685 06839 66296 84914 56837 01488 55030 25673 38688 68557 40956 31494 55430 40719 82308 58926 43666 89414 21012 13444 93221 26417 77996 63512 04957 30396 73506 79643 73580 98476 72416 98464 95460 22801 54542 11779 01438 92099 09953 80629 14640 18241 59285 74356 33289 87806 99054 34664 38520 38641 71965 64686 27190 61425 62229 43041 69690 26235 15872 62898 92760 34100 86049 96041 87299 93573 03359 81930 41180 22286 71151 41762 97061 73517 85843 17535 35196 87750 82230 36111 81250 69239 03802 98277 39113 87572 98048 92809 48706 04227 36777 35533 68800 24144 61426 33389 84827 72280 53372 73492 41690 95173 29248 37197 01577 87508 61253 39157 26775 43675 22463 91391 87482 34335 57147 92342 94614 07980 76079 40941 57628 17498 76848 75673 67325 71732 89170 38632 03668 12046 45206 64591 68590 13885 74870 95058 43813 13339 26140 17346 73653 58706 10376 28629 72839 87053 72627 25005 59320 25777 86948 15563 12083 19172 76708 61443 53961 79989 59908 39896 59447 65996 19487 33350 87507 81547 98641 43472 39393 04137 21130 30228 41453 35970 36594 75949 52947 80518 90865 74392 98855 44086 21278 44799 27696 62375 76984 70968 94332 52039 64264 65305 67790 87257 16839 57895 64066 01285 91186 10562 03943 13025 86847 55927 95801 78589 91744 61478 43431 67855 52487 18627 78844 66033 69695 56775 20090 00230 18299 82372 54064 91009 92863 42984 44322 28952 77887 16352 63892 76222 43131 24453 53088 93130 63918 72568 02322 89690 66449 13340 59916 02189 98118 35836 64912 94743 22824 79614 04892 85864 41280 73782 98781 00023 36330 01060 04666 44206 43257 86845 52609 09485 45101 13272 02453 97575 92965 58277 26641 72397 51334 59660 18027 36645 68383 04144 22685 33340 71290 41443 97726 72402 86551 23321 94108 82205 85290 67655 64450 86145 53573 47499 95843 04198 87719 05142 67662 79486 14615 91178 34383 29836 37025 28562 33389 24348 03906 01675 17786 84950 05718 70386 14217 12967 94737 09115 05670 40682 30368 70896 39297 07893 49460 76439 59218 63486 61613 28189 64342 91987 69493 49397 91173 65132 14147 48173 21627 18423 45313 06555 15841 52698 16732 94568 69990 60686 06462 09289 99093 78577 62190 38908 44832 62577 71544 51790 08360 90475 57405 10538 08115 88205 98223 11058 62635 81408 73325 46617 98366 71995 33229 96909 82476 39708 94959 42115 80671 68684 62353 01968 40001 99016 71380 99815 96681 03319 60448 51677 08893 88288 65722 80314 14609 21263 41431 54286 14395 81792 05183 52019 79231 38190 08279 50861

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 9/22/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.