Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
62340 59743 12229 89432 47588 22575 92994 64350 96197 81658 26024 59423 53483 07285 81689 19798 15254 18284 84749 27439 66868 64834 65924 46439 47295 36272 38452 93332 38183 93907 99654 32407 77916 28834 57495 96018 00680 44746 82146 29900 00524 65746 82551 63477 20423 69158 07981 05178 66341 43345 74607 62749 46290 70513 17052 88563 34399 34532 64961 49937 59970 53742 44562 24440 21544 38770 05226 20208 25964 75339 71030 21255 52435 32084 17324 57789 41587 93361 72287 01520 09542 17062 43493 85973 86967 17427 69473 51806 83148 72855 96280 17113 75042 58719 79046 72747 21349 05176 08548 02624 01565 79980 62771 29041 80053 96299 83470 82986 95100 45518 77730 99449 72982 55062 44532 37738 67024 71202 26314 26791 21667 66867 85533 35486 61526 74462 06229 67954 05456 43676 20586 83894 05609 24294 60493 43883 11505 74014 34112 79691 59087 91254 27435 89589 84786 72970 30850 58668 64586 97462 90699 04145 78082 32193 85846 45679 97546 66597 29238 00685 01989 69896 94464 04640 16220 73906 67322 56405 74915 80856 22377 88530 11672 96195 24529 62567 73080 86409 55570 89388 57778 61832 65752 74492 80518 84456 50344 88320 61228 00749 51197 61565 39074 99461 83309 05490 11524 94441 86382 57233 98407 32448 01389 50127 30980 25964 72135 09007 65988 11005 71820 70523 24724 29937 54600 28457 57099 39284 32151 04031 30695 42542 75232 41220 44836 47996 40244 27067 69645 51524 20798 36992 10108 44416 24272 05109 95138 46187 73379 19533 91635 62384 32722 42698 43551 67403 60366 56666 35950 12299 84393 33439 84074 57602 04466 30274 47400 31125 18395 09996 68708 10779 73696 86306 38141 32386 44153 94099 82269 22490 31385 84772 78146 56170 91403 46538 92382 39854 86177 49742 45197 19129 60194 17168 99488 11554 42026 19353 74890 64474 70887 94903 86839 37832 48200 95801 10633 11981 14156 57723 70498 20497 49279 95347 53647 07989 00988 22668 49343 12916 35156 98312 12965 75396 12680 95843 55064 70022 91036 99081 55432 63668 50845 22412 02162 98308 47436 56102 55708 98828 87406 36606 37951 05832 30186 41884 46262 33464 14600 11713 92559 52213 10429 93000 67378 96728 94975 10089 28926 98631 54621 60084 17151 44331 11394 33150 92802 57832 74528 57833 01490 08550 17028 71372 62753 44122 77231 15008 84116 48222 85366 54299 00155 23370 15122 24431 36561 98747 60205 00532 99199 63008 35906 92986 88172 22089 05658 67739 36885 82029 32602 91620 76106 56773 56147 02648 23029 00991 93538 05344 95334 67887 66410 91049 50256 92013 52358 83230 48640 97081 61495 07796 44008 28775 38017 88412 96619 12567 86763 66806 12535 36524 24782 48088 07680 59122 57889 71057 96903 42064 82233 03517 08042 08084 10858 62589 20987 23766 25263 60022 31740 07352 51969 72507 41478 61560 64077 36988 70619 31390 07834 70976 97878 86941 54193 17861 24336 31223 75377 17225 62500 32966 46441 00152 50364 84438 71833 09544 90473 84254 36962 45433 13985 45187 84753 35289 69735 26986 17213 29338 38295 94182 21996 20873 71038 98907 23961 91565 54201 88699 61737 81776 97947 39322 89286 85874 50425 12575 02463 72540 36838 39103 90580 30086 23501 26211 12971 36767 06902 90679 00549 56088 27772 16570 82374 57123 10140 38045 37210 59825 25399 47176 70095 05337 81367 26758 13894 51307 36351 08119 55870 92200 38209 53937 89242 04608 88412 66048 89749 17566 31106 18263 17211 07862 67177 14176 42092 20350 93310 69981 97066 13265 66055 22279 53574 28531 90885 60897 23390 87078 36266 86695 85181 09151 72709 94381 36073 59623 36843 80324 68211 18311 20471 75364 70322 75285 84633 02628 54277 51180 98672 60340 06654 42511 04293 29634 65301 91984 04628 07366 20898 83811 78295 63928 43520 64016 18464 26061 34198 85756 96920 84663 01483 79628 53122 27606 63009 48983 08266 97549 72052 90237 04352 74747 69097 38188 68240 84864 58399 36321 00718 31788 09544 32130 90563 55444 84012 97422 53599 14601 86742 73633 96768 94690 42690 42141 07184 40615 98395 19580 66201 14565 48543 78147 88473 78826 87523 90920 86020 03595 85995 02167 57283 99790 92453 22661 01195 76867 59783 49992 56239 25626 96830 13877 64511 26031 44956 46476 60782 80016 79608 77702 86562 69301 36875 55535 29163 38204 65054 91333 85757 01452 01213 30146 52446 76996 72750 46030 38317 43822 23957 62353 04509 24762 67586 97115 28275 94311 61407 33257 92041 11433 09770 13973 97476 77382 90172 63025 04544 18504 04817 30051 95578 94060 57178 60885 64333 29031 53559 92860 30053 71934 29660 75128 76534 77633 02137 13971 16184 15153 45167 43109 79087 00492 92007 19018 27066 54432 61561 41242 92743 85352 09937 97701 43607 97044 07015 35007 71068 21520 38006 53777 04528 76828 30015 28944 50439 49865 03607 55070 56363 04185 49362 16657 00043 12818 29445 83463 03457 16077 04165 30812 71885 04373 83538 84906 57969 26029 03849 93138 50777 20088 29215 19406 89868 74130 78149 64425 04348 07081 75120 11037 76939 77030 27116 94527 33036 14035 25208 97933 54776 77941 71110 72360 20094 41192 28745 82291 66788 96640 00805 75902 81585 90360 30313 80372 14197 79464 27187 22195 16387 14909 19803 72497 06034 49313 31555 17343 56190 69768 82421 53051 09146 55651 15521 06510 15495 61434 48684 80482 98191 24502 51008 23926 41616 97962 44423 27300 05640 08455 30253 42881 64682 38971 40779 30075 71775 36660 15804 25730 47630 45644 04209 39445 94693 64830 90523 73887 36213 30723 46479 70104 80302 25240 07583 77833 08996 08517 74670 50814 92322 76728 40472 67107 27356 44894 41175 74397 02287 54695 32987 60313 85481 07286 93697 47737 39542 21104 49240 15118 60374 14686 25256 41782 41246 14479 23655 78249 61850 87652 24181 41541 02369 99909 10969 35498 82535 98302 24114 96087 25694 19044 36229 61718 47868 20319 54011 68554 71818 40097 44798 70825 66103 78946 88139 86140 09148 07844 52350 65799 78302 00990 96079 90105 63905 93622 94869 88679 08344 64821 92722 85770 70122 45331 78657 70569 12917 50369 88275 92521 19645 37436 30323 81636 31523 89129 38254 93804 12132 20960 46791 81107 36478 14158 93490 87130 05055 73492 45298 67275 82908 10075 50124 34071 63695 49182 13394 27491 58751 63061 99614 10261 11149 28744 58938 88173 34762 10860 78725 55399

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/20/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.