Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
15721 13369 10042 19920 84345 27638 31811 85887 17623 59274 67492 12071 64388 68026 19093 48698 05213 18426 74267 89062 91472 62603 57872 14832 09401 48098 08539 66371 69163 50675 80228 38047 18907 32131 68796 98541 83835 23111 63554 36165 30263 30923 23835 29174 54681 72344 80554 41073 97816 31438 62769 40936 83700 42366 49247 48716 83724 97201 45021 05557 05708 78735 82961 69105 07957 18300 50328 33826 38331 78570 40341 76312 98299 61385 28738 25598 32009 40553 75340 58472 40346 19670 50613 19789 19994 14927 87227 67782 27505 62929 56626 44376 68351 53500 70582 70501 10997 87501 07764 66402 25956 59640 65297 96952 49856 66285 35326 41969 74499 38279 06577 91520 60927 98746 90922 66243 78482 45911 74940 62653 68868 60908 96478 23454 35218 40593 46215 32858 56151 55359 94228 36892 24836 31944 41547 88710 13058 61249 96723 18911 60275 31146 77389 30843 87685 84292 36822 20926 37286 00943 15508 23954 35940 06763 17701 83416 84434 05641 12987 46803 71544 37500 62845 85923 13096 61110 72216 42212 16031 61902 66054 97049 67462 84780 90900 67065 48745 91933 41438 24461 74533 45648 12059 42311 56845 16119 73422 64887 94124 14268 74020 02959 85302 49547 66741 54118 68861 12760 60428 48081 86899 83868 96445 17008 74185 64806 50237 90812 72231 37294 57895 17473 68347 45650 67715 08349 59708 04601 16765 08491 42412 32099 32442 91952 25549 07127 59040 82104 70256 52521 09310 96944 53787 42772 41021 19414 58570 36848 58525 92708 86269 36000 39318 40588 96854 66575 85603 12693 72653 87834 00855 54854 07424 24758 91376 04408 20410 25864 92868 10504 95406 46017 21986 79425 44821 54240 52906 44891 98740 66532 18887 63379 18985 03675 38831 34431 38178 74049 68848 45967 23807 81443 78816 44601 67284 57873 53948 30950 98010 21384 21348 79945 22436 58873 01580 86149 88126 33897 85226 34064 72822 19483 34450 93449 98501 55945 09560 39626 70444 33695 20574 98797 41294 01053 03775 18357 00118 97066 23283 62204 86474 09311 97607 31051 29470 56715 51219 07741 11826 97367 91105 27559 58939 61325 08338 73543 52945 08434 04630 96798 71778 11138 43906 61808 53239 62289 28856 16747 84051 07963 02505 88795 13928 05270 74770 04446 94634 05167 74026 34826 44047 60275 23669 66000 35218 57683 43676 94287 10440 76769 77166 46573 20304 72005 41970 25624 87766 80776 07185 80395 97207 56189 94740 01348 08496 24886 05961 40757 96054 69855 73128 58030 12913 38247 36043 90012 79783 74184 43589 46305 99112 76573 80293 29576 94148 81920 17890 80871 73002 72139 91885 49928 17712 07370 03113 90487 98304 83784 44305 80608 11853 16403 51648 67976 46550 46907 81351 40220 70759 76451 11202 20223 47086 23472 67136 86431 71434 06507 74792 18174 37071 52003 36082 65969 23691 27129 30748 46839 11475 97590 42927 64624 20157 10436 12713 55291 73082 01881 12719 57250 86272 30109 49641 06665 82487 33090 90819 57764 30287 11393 15800 28157 08098 35993 92901 69143 93268 81093 80771 61027 76136 81927 54953 33430 99091 17580 59446 10599 20635 18793 83271 81726 04445 00784 62030 96256 33439 21054 04468 84199 48833 62201 44040 01446 14208 39734 15468 00077 04569 34886 56307 23678 20411 52422 33506 27651 26780 03459 94973 24525 17333 13269 46133 54274 03405 54101 51494 79622 28068 02987 61208 06362 05196 24557 62636 28665 83525 78851 56906 99394 35718 54133 60480 25415 72425 24700 31714 87912 81348 33698 22419 87694 91301 00933 54429 15517 61275 55684 21158 47387 94499 94514 14164 64877 77502 64085 74714 00441 44176 68969 70342 07720 64841 04459 96417 56865 60304 14384 02699 54838 40922 73923 44909 90732 70666 97411 61285 06082 56182 71159 74147 90177 60857 11262 16461 00370 43874 46412 83397 07396 24285 25713 08900 65680 70063 51489 67240 08651 12172 37101 99588 69054 83625 89758 65568 24262 83550 18327 19826 66593 66250 66151 13587 98616 55266 68854 21223 53466 82440 37162 91813 40158 51977 64707 25704 13899 29509 60848 76077 71399 56154 08475 75506 71185 87584 46828 87521 78911 58081 79307 83176 37676 69604 06284 42602 63329 05852 82916 81576 64789 71322 01959 03085 89350 55377 01578 73881 93002 21303 98161 26051 35734 20375 44131 83576 01856 30922 10759 13893 45303 22381 95975 04460 59955 44369 57183 64317 74942 40740 69073 50645 74964 88647 06429 20338 45598 62610 51950 06555 43613 23570 29053 20288 92281 32961 59694 76925 01692 91765 47175 47809 14063 04578 83956 36805 74055 68671 84475 81857 24079 88055 42949 81555 24617 12540 16197 46698 99527 01801 31448 76851 06358 14437 19150 61913 31665 22036 70790 08677 11318 48238 21701 92394 75817 32794 58877 33334 20601 20633 53783 98347 01366 75921 20170 27431 54373 21125 96888 85289 41761 01074 55696 37894 21862 72026 34076 54050 44511 15725 93043 31958 71359 78466 99963 50773 21188 35157 36360 47172 40219 78382 30732 16913 97427 32464 16361 41398 04856 92527 14127 39237 62926 88556 40321 42809 30750 74465 39455 99825 21444 42154 42078 99892 22441 60573 47585 26071 40803 39789 32032 31445 73533 20042 80948 40678 02888 85809 47147 76580 16692 04871 33539 11666 53646 92371 00947 44721 73646 99877 00914 02363 53088 29446 33520 65604 05187 72686 30192 21412 25285 74818 61518 39277 61168 23737 70056 72769 08373 64081 28152 86103 30505 36283 20748 05701 04548 40644 53198 96755 91176 26388 84077 64788 30070 05728 82995 82219 60223 92929 13410 39923 65261 68366 40442 23794 43749 67594 63680 16310 04507 95404 75002 23092 86921 64888 41381 24468 06255 61500 12701 52036 23965 32122 54569 90226 43013 99124 06126 02863 28175 99426 62863 84728 51355 48561 84429 38121 61902 29738 27446 74427 81916 07904 03322 40672 26564 68809 61061 71092 49392 83064 95079 63690 12638 95205 78015 81802 82544 37760 18540 80660 49666 70303 44177 58951 74193 43525 09105 35382 56251 88292 26979 50243 31224 29706 28736 91968 90060 26173 45414 48697 24585 33461 15959 84840 97820 93762 20040 42641 39286 49759 35862 68736 65323 83685 22976 65719 24398 81386 30094 68703 67422 21382 27903 46885 43057 88935 66870 30104 18033 15105 60065 60408 22459 40816 90965 68613 20135 05918 46269 75867 03865 63248 73715 20214 15769 17697 64885 08155 92597

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 1/17/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.