Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
96099 16795 97329 71614 69845 05640 25545 27713 04309 18971 60381 23718 39757 67243 76721 16227 62643 22338 65171 14671 00929 31626 89873 07874 44392 57025 71317 15617 89936 39070 94152 65202 11908 85969 40001 93012 57410 87671 45271 71074 66609 54924 83968 58622 18050 83339 75505 78662 98972 42453 17523 19528 00616 89792 43693 61452 38539 09933 06536 28122 97929 78566 85234 63245 03914 51555 18440 32110 16875 79004 62092 48151 52761 44319 72227 24508 28400 28267 12791 50593 31810 98041 88454 93648 17515 21323 02421 25309 26852 05347 39242 73171 33291 60957 72630 97347 12740 91676 98270 92033 38864 07764 91632 12068 03391 65282 90784 24501 61430 30153 04203 85147 01782 67227 43590 40155 42250 54343 81680 52569 49955 21390 35057 53889 86646 14369 71964 20634 79013 84459 45117 75906 14002 02076 49517 15952 59123 95937 05264 61725 07766 17122 65366 35448 49512 28138 48555 62175 65447 16978 97097 96357 48473 36188 59608 73400 48619 66927 98862 86230 43357 08028 24606 86854 32915 90065 51372 12926 60583 14409 81292 39305 58032 17299 11905 54621 15627 58896 68973 62833 77732 37352 64296 09799 63031 27866 78519 34831 09835 46755 68948 47261 46398 40508 02361 28003 86227 99855 12822 56116 48395 98824 84493 60367 02854 58809 59444 95791 40750 37629 70471 45254 69728 43590 98903 46019 34253 74549 57416 41305 60919 81978 97847 56851 28760 60024 44008 02477 64563 59572 49491 98647 63185 27306 80491 28036 32857 69778 23610 12083 65506 42460 18673 12562 32061 63817 16541 58142 02766 54362 61922 95949 92497 00723 01185 68126 31068 44702 15171 13401 58549 97341 77005 93644 45577 77981 34913 45435 38666 78329 20027 56622 30522 51515 79204 67883 55356 26158 32837 99294 09194 45430 57665 01886 95192 31112 94587 34210 93947 72665 81476 63900 58810 41286 10989 94232 36197 28973 13382 15692 10905 12588 64319 82533 76421 42918 17689 14342 30238 58739 63415 22599 94162 25877 10267 62242 59631 01272 93677 08229 58023 22040 08547 57099 55969 19533 67068 53535 75669 58408 81524 41929 40200 00680 72113 42941 43830 94795 99754 55063 47332 89684 23900 81182 98295 73830 85355 80143 76438 39328 14080 43308 63920 70950 62011 96124 40653 60207 60866 24680 04619 44409 04964 27273 17175 70731 59032 90971 73372 85271 91022 93172 97263 47118 29918 28169 62218 67412 48553 58712 36238 73404 71422 92571 52263 97522 07490 84098 03487 91433 08009 60790 63671 65103 49327 74849 32456 50864 40703 79749 05672 92470 57119 31794 70655 59167 97093 16684 26556 84749 65487 01075 29657 31626 81328 09144 63678 79880 10612 24148 35095 41336 24122 14991 93451 98615 80237 87781 76668 69205 32750 62398 81357 94518 63671 74053 58135 53955 41049 99852 31935 03966 01781 10357 47318 42118 59422 46151 38788 96149 37000 19398 26103 38040 24829 40408 34584 23069 63321 69194 40435 53879 50797 92044 41050 69540 76302 23075 50326 59607 77414 30798 18978 03188 23060 89683 79848 33005 21329 56718 18220 24455 52279 72974 67134 09671 25756 90165 27694 16590 64202 22214 14383 33012 10471 21813 25377 95660 60636 81985 37855 04248 21810 62648 28311 60540 94950 42178 17871 32414 82675 93970 42599 42921 22076 87999 48816 84354 42528 17389 13407 57304 48507 49966 89137 34727 27395 04829 74963 51004 82300 53907 11345 16004 89864 48526 00559 54147 83075 70967 52012 68467 59084 11031 52549 29673 12013 67600 61771 90213 90770 75203 32347 23335 81859 55573 55322 87150 17196 94216 30433 13696 06918 41968 61422 22998 97200 41558 76348 62134 53061 79175 72896 69291 66182 61026 88695 62837 87718 14901 96626 55375 86106 16733 25140 92808 29884 42163 03562 18406 95497 43101 32411 61862 00115 49291 78711 53358 59443 94868 96301 62625 70531 69927 71148 63011 19593 97081 91662 20537 14814 33027 44006 07963 44162 95104 32410 43849 58206 12858 24482 56621 77924 04608 21524 73627 27516 79001 53838 35206 92218 61581 01044 33747 01112 46348 37393 77751 34943 72321 02075 80898 58926 25103 94535 76103 80563 63440 94783 54583 32452 70786 08709 29918 80103 31862 38395 27115 54747 34224 77426 96668 11150 94822 31203 53623 10429 11562 62257 41637 27856 39871 60560 22045 85680 94255 38838 87919 10933 74868 52883 03133 18246 19069 46866 66423 17657 77988 23650 00452 47431 18085 40100 65870 31865 47717 27401 00379 64106 68696 36364 82793 13958 52854 07741 22103 60701 43607 67541 71538 50899 82511 47336 67626 81212 60834 29579 94262 06212 96111 17913 71763 71194 33709 32487 70936 69987 73390 30265 52140 27768 20874 50339 29345 08873 64398 84244 59197 49614 76283 71268 55083 16084 39495 18766 26187 86976 99206 47472 41558 61394 39356 61811 19172 91662 84220 45211 39992 41141 24967 80418 87031 67040 71220 94807 09417 28227 27626 30692 11453 18043 95410 40645 66679 22113 98945 07799 56939 01163 37309 91171 36437 98826 60848 95967 20805 74459 72744 68897 01161 60953 55571 18487 83177 47548 22861 60393 51135 87644 95664 87712 56994 31613 04113 66296 34453 84613 13986 55060 38009 89398 78268 51301 07025 34134 13713 61007 54786 85209 02406 94169 82570 45047 18330 85095 18703 34916 78920 37723 82623 02750 21636 95929 73947 55950 05515 38846 86529 19207 37743 01173 47522 17306 25209 18486 81445 82944 51074 97556 99242 89539 76331 11654 12343 09047 66366 20869 71733 94770 42524 17420 32007 89169 58667 95966 40436 56679 02743 48921 51031 41521 23340 86763 63602 50511 81256 83352 87823 60879 26057 46238 32295 53073 97643 11975 18606 68581 52806 66433 20394 92734 16796 90111 27411 62526 59884 28450 34586 99425 98921 87145 56085 67179 23903 52456 64374 54640 49535 36524 54285 83565 91788 47680 32073 41436 69468 85758 29482 39271 30774 62412 42809 94433 04862 46420 96961 38448 78410 34005 34522 49812 97174 44144 29815 11808 92557 38877 27964 95316 33170 68627 08954 66627 01390 42505 76699 20254 94930 23629 73098 36743 53395 49430 17104 65493 09848 76972 68781 32557 67370 53257 18369 73465 00627 10542 00348 91031 82427 86650 32496 38165 35286 70285 79957 25690 07990 71339 44299 55150 77155 16211 77579 76623 73795 68114 21404 71538 34877 72392 70997 60480 79890 26829 64253 36010 12406 76964 95807 20474 46638

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 1/21/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.