Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
48248 97330 13531 43340 12427 48370 54671 62130 54419 52302 78156 10841 75793 10667 60603 15869 28604 73547 33023 40429 54461 22368 32386 29863 48585 77716 78181 81956 48872 32153 73978 42247 49957 08022 33991 24340 42277 40267 34644 55219 76130 84241 91128 45559 50741 48518 58966 85038 28323 52709 60576 62652 73141 10273 36835 12026 15571 36328 23636 81725 41166 80465 53456 30569 04718 84560 81918 47943 69319 65587 39349 99113 70423 23431 07346 95535 04913 73697 20341 90169 45157 05528 92157 97791 78076 64414 67577 40308 69203 60003 98900 17066 51747 98918 47510 00165 40656 42567 10435 54774 71678 89955 71910 84438 65425 85497 79937 01395 16434 51831 47854 21887 07230 47630 80892 86470 47391 50415 27738 05333 37605 64366 57099 28602 58739 53138 59264 41661 85895 97669 72668 85458 27479 78996 35452 01819 89259 86064 62025 03765 63428 48544 44630 70817 42667 94639 79905 69314 59210 33901 20443 97726 48903 65043 51357 56960 40267 08750 91844 45681 68561 65491 21742 80618 14848 98334 33101 41881 70052 40757 06735 43267 24021 29460 13794 27583 79594 62179 42321 86948 91660 80498 48817 08112 31221 77659 34800 42764 74456 31378 48373 02851 16779 61657 10782 80882 11910 13595 67981 95248 35927 65201 67192 60529 76337 60206 58471 82812 46134 65878 21266 79997 22864 55830 15984 27116 12685 17837 60552 26640 39431 86648 31978 03795 58674 01793 92913 26873 96789 90404 43218 52545 15010 75021 96521 96175 98502 06406 81785 27127 70414 21358 69864 89086 30948 25522 25071 45363 21419 01205 81739 49212 13317 40184 45782 39138 22371 01524 21259 59216 47610 94386 61936 04399 35427 85842 47847 90829 68641 33685 86861 51155 80559 44246 41240 54841 94038 55200 79202 53479 85549 43386 51486 51105 74239 57612 92912 99506 35994 76475 48947 18537 42498 91166 27260 41433 25301 13289 74296 85117 64878 07668 76826 45519 04692 50165 88520 17885 90257 10488 81502 42088 33199 60005 22917 72944 00323 04557 76493 75523 27669 42270 29100 45461 59579 46369 42316 54272 12759 72987 28991 19664 65339 93981 54803 00845 70940 54743 64827 18844 97731 57012 35095 01815 92495 66688 49158 55355 69693 46643 99648 57815 25521 14535 14844 80612 76977 25619 10229 33543 25924 80561 65058 35094 48149 58247 23918 07759 07427 73602 23289 98343 94585 60395 43108 23285 91562 79059 83333 38962 60474 49496 65504 37006 57674 08895 59303 64616 72818 94543 34123 69869 92923 51636 35623 72034 91432 66093 87296 56884 42278 22368 17028 97007 58943 86265 08664 97123 58523 12744 78568 64390 50790 78740 77184 03721 52254 40975 15604 38097 25226 18764 17123 53875 41879 01836 93809 71107 73314 83142 48061 38846 03619 16667 99171 55462 68932 00244 34890 13954 21506 83367 87987 72264 18769 00001 37815 48586 37386 26399 36870 41681 12326 63908 62355 76188 00919 46788 92743 72939 71920 75021 09339 44270 19573 72123 22842 14331 02675 67959 24909 64404 08634 06554 64716 03210 42533 78904 50522 62225 41195 80793 76227 15992 12244 95600 72943 27431 98166 02116 85549 18155 65374 07354 74254 63781 18267 04361 41167 14241 38299 55034 81848 39097 48032 97929 61880 97852 00208 81073 18428 35264 91806 19781 86800 01656 03104 79465 52013 98230 61747 83445 25351 47380 31802 45766 45933 88003 27826 29007 07269 95815 53927 27095 08830 28658 67826 73117 32603 96815 69920 72134 44660 58327 17343 58990 21714 39297 63032 81127 02689 79209 19785 06400 65276 01238 49328 55882 27499 07563 76373 61684 74275 99679 27685 49766 08981 23712 96140 47744 30011 40725 29792 17712 32341 22039 45932 14043 34094 69541 70152 66213 28097 60994 00407 86605 58448 20355 96078 03327 22078 13085 92035 18019 95310 66459 37698 88672 85426 14884 61100 37435 07228 70206 57951 83431 84598 17026 05698 00566 77064 33012 02589 00346 31361 34210 31736 39687 57992 45356 50177 53726 32794 95193 02936 13636 23498 36779 62091 09439 41291 92799 90831 57814 17380 25883 32521 34916 04555 33913 24766 34183 03751 70336 38469 49152 15606 89481 41899 81270 17033 16866 89749 72704 62773 44513 37202 64161 11964 51263 78989 77691 79699 48083 13457 24507 13592 48382 31627 37793 95338 63323 31260 30521 67278 22138 55916 78257 83958 17433 59019 26978 88696 75509 92920 25887 15140 51671 22956 85217 13833 50538 66516 59053 03776 71359 57103 53138 48988 78327 33394 57687 60070 95884 53306 05203 20771 29042 33055 53283 39542 08691 11223 92438 26106 61912 37815 78898 93020 07290 88325 92431 82231 75227 02799 19151 16647 53254 49895 59332 76693 56343 15947 60223 01878 22218 19029 73855 17354 31673 48012 39858 85481 53879 26635 93274 82389 16698 02558 97364 99537 01996 61433 01427 70282 65957 65961 23609 21437 84392 19957 58715 49833 23055 57412 11025 23886 32952 56553 52101 10154 70657 78912 03606 24903 43623 33379 45110 10668 80493 65275 46909 37817 26414 70405 27830 31111 63352 34129 38052 21270 55399 95415 66912 21533 19089 35912 75718 29219 18711 94005 55567 52294 86619 03878 10151 60930 68548 59582 63573 64069 93921 04090 93157 10984 71169 43367 87266 17844 08037 85426 28106 19273 56898 04394 99547 44917 85069 29574 19929 21003 70118 59508 99878 96901 20183 01037 25120 96690 19278 33367 64286 95718 97609 97129 01735 22165 26886 08443 95358 83605 40637 97978 59395 18570 79515 75018 72245 73111 61620 16522 09280 02361 77801 81188 00659 97098 11975 48514 14136 35305 86439 82861 62876 58738 32180 22517 38267 74483 84190 93758 67733 81519 01776 49910 97544 22286 13876 35412 00632 59240 89367 74881 09399 76420 32382 87169 73534 06010 02619 24432 42825 79902 60656 36188 74966 06256 38260 58379 68378 71063 33706 27437 20015 64712 32081 19347 08179 33545 50605 13702 00332 56428 08936 82776 85909 46304 24488 05578 34130 76764 32741 06918 76812 33606 32553 21472 16183 91395 56474 82839 57694 15032 66058 37606 67830 86308 72176 84413 56924 55474 80327 38013 86971 17800 60951 18332 04436 15138 44744 64538 98069 62484 42965 74097 81721 99541 92756 66840 02150 67282 27447 74022 71838 09513 71873 52389 26801 99432 62686 23235 09405 91197 93667 36469 76173 96482 86038 59675 30604 86047 83774 92175 80979 16294 73917 04093 23179 80832 31889

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 4/3/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.