Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
49879 55705 36099 20057 36510 50916 10156 43809 52488 66288 99123 96659 59684 72457 22341 26832 94679 15936 71517 65461 45318 89433 99781 59404 52282 27158 35753 29053 35647 25137 22603 51146 46442 86525 82113 66584 43219 91921 03744 13239 93612 94674 58693 83767 00897 41202 38958 08426 55560 16300 21402 62879 11854 13458 56810 01014 89366 30165 83959 12756 99576 88230 68675 06874 97423 79089 67898 18799 57863 34121 18744 43435 77436 19959 52565 92971 00825 58799 34018 79693 72422 73720 25119 23797 12887 58991 74312 86204 20712 75384 30529 26366 98785 70488 82253 85087 05948 24021 21579 92327 33567 18143 33280 00023 07086 32768 08865 39894 12595 65874 85645 06258 48392 78821 10794 63842 01542 66658 30412 80597 49446 53439 03588 85509 86396 12536 41460 51410 75143 11946 71280 02794 23455 84612 25476 48628 85685 23726 55715 40162 89330 03051 71964 53746 86592 22227 06552 98638 30945 77083 03237 49820 78693 54957 31262 05808 15536 54999 24422 71469 08131 33490 45127 65825 80653 74151 73459 54874 16360 83459 21243 09400 84156 10956 71100 87781 90149 94563 40519 43809 54219 30893 70910 59496 11577 70562 41674 02890 39329 38502 09264 10888 08038 79276 71244 97044 58285 27387 55353 84387 02235 02592 33572 63232 50198 30214 61179 73990 62188 86456 40818 14982 24491 68711 11556 75252 51225 90878 62951 92379 10901 03670 74111 35292 77989 39931 77756 12076 09477 84944 49284 02792 46436 71749 20828 17285 40580 01449 20326 77996 05832 88529 35575 27780 94884 31163 03301 62711 00759 06531 23218 89901 83376 91128 97088 10307 21109 06079 92790 26547 87353 87447 33375 75713 52086 81555 11136 87181 08429 65287 26664 65426 24209 91408 52915 97830 18525 58874 24270 87500 63307 08147 50598 11079 09879 41502 56320 01557 40523 68345 44468 56081 45039 75522 85753 68776 22312 22636 32621 88548 06868 62352 58320 01903 20442 85717 20964 40755 48538 92469 52588 15243 41992 86349 73218 71540 43535 95415 29931 74667 39356 17354 60917 16304 35660 89793 84541 47605 60238 85616 13407 37009 89023 33269 93419 53053 97656 62082 67845 72182 38047 72573 66379 11565 39940 31763 19202 86908 37470 93493 96048 95263 20733 43731 70262 22840 12340 70885 07866 77826 68989 61120 81620 48190 08019 18665 10085 84500 58977 11128 21684 07734 40179 39810 43768 42092 60276 35014 16676 72809 44808 76362 32794 28969 87778 38101 00627 91315 28205 59424 33852 25064 51690 39774 65385 37716 16980 59163 86443 61871 07529 23479 10607 63037 08058 34806 62882 72447 06124 86727 93763 44866 18675 84645 18296 41410 43618 91090 80138 37353 36379 96034 40624 54943 11467 12202 92826 21212 69033 95388 00618 50790 46437 89761 62737 53717 94809 98186 01844 68256 80610 77527 78590 18706 12195 58969 30677 98212 91377 93322 36919 76580 89988 21340 06307 33089 51443 69030 92070 14302 17301 67966 30736 16881 78827 00599 06200 95397 53557 70574 38779 95145 86858 98039 99281 09953 78493 39957 48063 64999 34179 35422 99096 24620 42157 75967 09026 25126 74745 00882 91240 32612 14910 17521 54922 25770 07824 46618 69122 03703 37427 92597 51814 18737 27995 38888 83962 34232 70694 68236 48579 07397 75151 08015 94793 97099 46010 00541 26907 96680 84497 98384 18462 91767 14985 84679 51300 43082 36552 18442 79626 94261 99545 04878 19072 04659 07144 90698 60756 07169 41924 84429 10350 91030 17416 01726 52136 09641 54672 35686 38073 13376 83825 52160 01860 07391 70651 10065 97995 34442 68136 06696 65838 82694 93034 48043 18678 18535 27431 44096 57790 44387 45307 29163 11500 81523 64101 07181 99249 77872 21270 22027 20651 40838 75852 52835 69561 95110 35033 34303 73132 65475 05702 02007 55884 84628 71020 62717 28758 25989 91980 89705 03188 61513 33968 43062 30156 44501 18329 15003 64258 17416 98926 00190 52765 44692 63705 91035 49688 70549 61255 98018 54837 01805 52374 94998 77887 15688 86629 89525 27437 92648 03917 18152 25076 74171 61033 66750 44441 45590 83227 15819 75287 43899 40768 10799 12540 90562 50508 57384 70367 49333 02443 41836 21234 09059 11278 76295 59973 91500 92984 69091 92839 84137 66367 20060 51577 97987 79626 40854 32482 50414 61918 00253 60462 72945 99918 94479 78101 44074 39386 42508 59722 47086 11722 06382 50449 52860 85538 36522 30268 27687 43212 42041 03090 66079 82455 86055 10818 48584 42873 05998 72402 24599 57528 58930 47907 20179 29504 91855 27573 70853 33464 37031 45880 79434 42217 32280 20606 98834 78279 66305 16895 39875 90436 49000 36315 04100 55305 06762 30923 41589 03897 02807 42327 33769 73182 82475 65748 01227 82649 43553 39082 36523 35867 31578 56964 62002 47053 60156 09831 12606 92628 56269 47980 43689 87783 30593 70638 63825 88043 72807 40018 92626 15825 71905 20382 43549 12006 61514 42109 31714 12479 90197 90751 06710 49721 16775 21100 10414 79354 30634 96247 59801 31707 97038 51649 54754 88377 27444 84185 10880 83793 74812 66226 17320 31781 53919 84692 19565 77123 86670 05116 27264 72118 72412 60707 47038 78150 83246 66413 40297 92247 84340 57982 06044 98643 79238 56025 88695 45342 80180 55081 10888 45682 03405 37674 31297 04891 89473 13382 27441 71659 48570 82893 03502 14691 30824 27074 23133 24279 21617 21027 67274 38855 61898 73158 16959 96560 93494 89235 61137 11805 29424 61450 29476 76833 49210 82487 50181 88279 19192 84576 32802 98739 37838 03566 76054 93325 06057 67976 00620 91233 22512 13068 06970 72304 03934 19902 58173 28584 30430 79402 87705 40890 15802 81418 32268 80371 02852 28788 89596 35070 83701 76401 01274 61487 45099 95259 60544 61143 38736 61540 45123 82138 76557 70661 75012 45719 51072 76339 95309 97839 80672 54653 84024 85722 79938 93110 84889 59423 54955 04704 65170 98390 23625 66980 98481 63030 60978 86098 72598 71270 69487 85891 22268 00117 74376 21931 87023 12224 43938 20592 93993 07451 34845 43111 65719 99426 62459 74650 52964 17112 96146 38359 92525 31363 79589 34440 90049 06492 76101 04207 27841 76832 38933 19152 97679 48297 06594 95002 58629 24946 23157 30788 19850 60544 83573 72902 48415 35128 03988 04163 02118 56564 17048 57878 87288 87114 92218 56904 41601 94998 81091 77712 41896 30954 87701 39449 36982

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 5/22/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.