Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
30486 16520 45742 14856 80921 31255 28416 11195 83824 71791 84081 37390 50675 59934 78563 02211 36412 87121 68802 41089 15993 84732 91913 48928 85957 19397 79250 37917 90987 13316 95468 20342 75474 89565 02585 16400 60080 42414 49043 87009 43295 32635 83776 91625 28008 07817 95265 71049 73063 47678 75607 55242 69822 34379 09573 96141 43731 47831 88674 25466 80881 86016 50220 37532 79568 10290 41385 97070 26860 15706 08269 72028 00154 26315 09960 91392 93745 15490 57598 27997 70382 51229 78433 06334 37835 66472 04895 35371 50456 54415 88650 66359 35741 88818 39664 75645 45894 69321 90268 72490 34387 91756 84218 31875 57526 43458 90759 52317 01010 23578 43685 38680 31495 88397 05405 09990 73158 21637 56003 32243 09256 29773 07302 76221 08692 62348 41926 00306 77576 57283 77359 58287 35787 11191 55016 32177 18535 74688 54297 90024 02928 72706 31652 68724 59527 49808 84647 81834 28915 40497 41022 52381 23256 64530 72757 70679 52859 47231 35129 77139 77739 64801 30784 70084 84183 14634 98788 38557 86308 10629 28699 20138 52625 03499 99624 83754 57603 26088 44285 37491 58232 63679 38078 61410 95581 49312 13138 65356 21366 84091 97401 71771 49509 82499 78666 23508 32702 42711 93658 16642 63967 41907 42090 58285 03224 56583 25726 49393 28848 07861 12443 92587 14233 31808 25294 24956 29357 74743 56571 75878 67340 13553 06864 49825 96011 01002 49131 34182 34467 36047 17752 32056 54640 59148 22595 20088 07853 72581 88083 31269 76387 85752 17246 62746 50044 85508 80797 08644 27707 31449 31180 17869 43904 76243 41646 76927 20368 10937 70304 17733 42605 35267 49194 50424 61450 52975 98340 21174 19634 92119 64819 95004 03345 50386 86821 63594 18790 65404 82710 78099 93758 10054 65091 06956 04184 12786 79869 18702 25708 02927 70311 89784 10240 80995 66110 37371 87523 14014 97449 77167 91694 55822 34061 06225 12847 92388 49290 10755 73595 12121 09160 98945 30634 01184 86430 58762 01305 63806 99660 40775 15153 67598 77275 65961 90497 13858 46625 58522 35984 32890 48048 03693 77157 04316 73932 30556 08018 02384 32781 19855 67585 66284 38271 36807 41461 95462 23319 88913 88391 69929 79143 08770 91830 95574 19322 61890 36501 74479 68863 79502 09957 00228 78260 16375 29149 78224 62558 33622 91982 70997 65416 06518 53884 68519 48168 57311 29362 83516 03886 13033 18569 71779 96444 88314 58864 77481 24578 93194 01377 03484 10950 65937 12568 06653 16212 30840 00793 18173 78065 81049 67866 88854 75322 86370 85618 59450 16976 26082 97464 55969 56254 46748 44962 09982 29687 45030 19379 03944 21166 75500 38250 41497 51011 83450 46941 42790 90028 62712 45216 64786 98576 38461 38794 46579 90624 75035 15912 79703 22820 08744 48891 03446 08549 05683 20696 25163 56997 44545 76501 65587 37212 24431 00245 29145 67170 97668 16203 99264 27834 27616 15543 58690 02217 71484 07890 34797 39446 88139 97890 69901 43826 70923 86768 16572 88896 05463 98896 57946 56500 52482 33353 53036 00842 55613 40487 07051 37553 74215 23477 66699 57753 41177 64898 40508 67112 45741 78281 44133 49914 41306 84677 70671 58117 78244 14220 85973 25420 61712 32687 48956 06320 34466 93063 56916 40179 84671 12101 15841 40285 78715 71889 35722 07912 19021 46406 50867 71388 26860 53090 65213 50152 50162 29399 22638 43820 96331 34373 02274 46245 90057 75194 38819 84582 56124 58754 67852 83349 27231 68213 96140 53490 76795 64563 96956 06435 76772 13192 30391 93169 80463 35444 88660 68286 30331 85181 66425 79059 90810 50350 56098 79497 06120 79541 68160 69412 83080 33551 76468 58478 98916 61946 88572 55293 34079 04625 41028 81448 30055 18382 19704 10579 72177 28466 05101 32440 97439 05147 42659 41959 27305 65278 38073 53301 25529 98854 77603 38935 80958 20580 73389 93689 15352 46426 33764 23821 16192 95200 58561 61074 94495 15100 59433 01744 67626 35282 05160 70740 67110 42423 91964 10645 71442 82281 38821 95782 63907 86258 07773 71274 15385 22965 49242 17109 92164 74779 72339 37197 88759 39413 40181 73440 85718 56471 90202 44790 32436 59017 79462 11310 54969 50134 54966 63242 88846 04485 48969 35064 36880 94878 99297 44556 51984 43831 94650 56861 44977 00129 44923 73547 17406 40388 76513 46670 19348 95621 52636 17840 32231 02797 18633 82276 76642 81404 72288 77876 45141 35013 59142 99274 60073 77839 92797 36906 56381 86304 00239 41071 89417 75600 92141 10995 67756 01251 58182 08890 11010 85674 87360 99020 32636 69745 13296 11762 47754 89358 84557 32670 05953 76992 59964 16535 49111 88266 28901 26448 94201 53509 56633 97865 41107 54319 54617 27667 05436 25126 75813 88223 76329 79755 34998 66455 99277 62987 54078 27894 83929 27123 32398 05751 36906 33545 42060 14972 19618 79283 48231 91307 31068 48570 54458 55366 15673 89410 72977 01687 96069 15140 20031 12796 30931 30990 36177 98270 97778 85648 31602 58796 00792 47821 56434 75243 03626 07799 96056 22712 87220 04016 91415 09608 32609 74612 84339 41701 28740 33998 87847 11182 05282 74416 81461 10734 90439 92503 31521 72589 93764 40853 36495 32594 13969 04580 97292 19270 71738 02879 12576 67878 67542 15590 99076 59477 64447 34761 36900 84993 95933 41208 39850 34274 98699 06079 50728 10160 70480 17419 61655 67539 52861 31727 59381 77412 39084 50523 95596 15959 06866 21908 82245 78596 76208 67130 11839 19039 92209 32141 02767 13368 32877 64165 69611 49091 41944 13256 18456 39201 86678 58864 67204 61243 40693 61395 90886 21376 91763 38775 91972 43435 74636 68013 95689 82991 28844 11760 70330 66417 81518 69878 72565 54952 55197 55994 17757 33756 00644 99070 75272 25981 54659 69961 88793 31827 22886 32981 21633 92611 87631 22462 27044 79821 40673 44318 43533 09187 41075 02607 15173 79739 98000 51096 36918 37868 78518 69820 24911 66395 40424 66647 11799 98625 90046 03838 67048 57417 65063 49612 42249 19240 42311 54709 41437 03243 70601 53948 16400 85310 28526 92794 86994 37127 07279 78921 86452 90243 18465 58768 31699 25132 26907 19111 18664 85259 08466 13617 42592 16136 32851 14412 43357 29391 71431 88640 75776 91827 30045 00028 04918 39485 06821 35447 26418 16708 74982 56477 11792 40200 90663 75964 78746 88093 25719

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/18/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.