Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
59250 97040 16255 29600 70345 24520 76516 45716 56299 88752 42535 96512 82352 00266 63975 89246 57983 36874 88647 36742 75971 26489 14064 02700 76459 54932 64014 72016 36016 98747 90113 46087 81698 83014 98373 63128 30114 64158 00764 43480 51484 37769 91774 59929 58704 71405 49973 33013 21411 62411 64576 51336 05039 20730 87006 16883 34888 76715 07455 15328 85183 13941 56445 11350 93137 27019 31395 68945 98013 04408 48181 96737 05189 36224 17697 18292 75218 47060 47420 67428 37891 53792 67971 08533 31300 48394 84679 81871 65901 05749 54142 73898 13574 16465 85789 12575 21689 44682 68445 87678 52166 10892 21892 96112 45539 99743 73430 12226 10017 92857 59443 83118 35547 26643 51957 48958 32878 75105 10209 88290 97621 57659 57202 88352 99313 71942 81271 40387 95481 51628 62649 59951 70700 49237 25022 32231 00660 43950 12097 82356 41228 74421 89165 70708 42505 96589 69659 13235 87898 66490 66720 26764 58174 48070 69758 99315 20526 45998 46016 85410 42637 63480 67130 26388 31738 85067 60695 95718 98677 84471 86825 69308 46974 57377 39713 20822 86890 79254 74202 41989 74486 88172 57338 87919 75685 92606 44937 47412 55338 04259 83148 38271 91282 95865 35015 27616 13407 84007 32038 77197 67714 36930 50736 13706 05382 07348 14212 24085 96827 90264 18711 75846 70766 05777 85187 62380 78279 06894 35863 73267 81873 12349 95794 89593 69541 64407 19429 04259 93830 11683 42175 67295 35897 16952 56957 56175 94576 89962 15785 71123 00441 45244 56310 55431 54863 84930 53392 40772 94081 06558 95661 17506 78257 35892 87076 30002 05540 84731 73495 96942 51133 33719 94230 56637 31350 40164 58613 37340 92681 70842 47559 52560 25856 59819 40125 21368 04903 91255 65079 13719 51217 07223 77456 20754 22614 40515 60122 50123 27403 72462 50340 46290 63441 15741 91330 35846 82198 22188 08828 97827 77822 15614 12657 59021 01198 49613 23281 14283 99011 90379 23372 71847 77810 24513 34373 23636 93070 91842 18055 40581 63255 43226 03089 92927 08879 23373 36598 95548 16567 78651 60728 78260 28125 89902 14206 81132 54591 30252 58903 74800 15310 47925 31397 05780 01986 74055 19537 66777 67750 55498 64001 92002 41222 12647 84865 77480 65571 22240 33160 26369 62582 25178 67438 19265 21713 59332 55330 09518 14162 17361 00116 43545 31927 29520 92278 06144 51870 71473 86073 90801 24779 97108 01085 95008 89428 96350 48795 40573 11644 77967 84142 18933 48367 77393 82082 61465 36713 89529 39155 34802 08034 26565 00044 61143 26987 00787 09141 63564 55588 32391 87106 36334 42281 82297 32431 40227 35998 09960 48003 22831 25221 56180 92667 63865 02048 50921 57786 45487 51248 46117 68804 47611 64333 73488 11814 68218 78613 27352 85110 68664 41263 72436 75761 44001 98381 76691 61165 18283 09057 69102 35615 64880 84429 22504 61861 51790 51749 61388 47674 11955 43445 94722 47404 38570 11184 73756 88549 05395 64933 74840 23311 12070 37021 07231 05164 54427 71206 45913 90412 19801 36730 89402 64755 07343 67391 42562 94849 73333 25595 24419 04871 01495 91428 00968 78079 98303 76712 42994 83375 13300 64069 08875 26868 84407 70987 52403 28438 08237 38878 55590 23296 35405 47143 86484 88548 90846 52233 81981 94757 19120 51712 55637 82504 54731 73322 30481 63954 17436 89041 96826 49416 32558 54148 95084 98906 76300 71287 23575 98710 46055 79525 71345 62943 55722 68420 75973 60120 56014 17080 06386 64708 79774 58225 70670 33696 12288 67252 48886 08154 86592 76297 50878 39799 03793 13294 99090 42551 78373 66044 36374 69103 08507 71270 58805 12478 71375 28687 73495 32595 43472 40057 81400 07828 45922 73258 85141 11572 14791 51344 21807 13805 96399 66605 20775 07647 67630 19633 86519 60928 81251 83384 06423 92744 36218 92239 83594 75026 72991 56067 94673 59098 93845 99289 72650 27242 08188 24937 14675 69258 02866 03721 14870 84031 37479 88089 22142 06087 64696 51289 22996 57160 75561 51432 49349 22756 69813 20556 11337 53711 51193 78687 55134 92754 47759 72900 45761 26075 57197 41386 74898 59879 17137 02510 93699 21957 00459 68876 70603 88242 35613 86388 74146 34375 51926 98314 80775 12266 49916 34348 07659 51659 96607 24671 70502 86689 45837 39017 66356 07451 83575 50731 81434 36559 98229 25835 23920 30708 75964 37089 81784 07237 21008 03053 05594 95695 00972 52153 16328 14398 17154 11737 38185 71994 99858 22144 56402 94027 28705 75763 00063 74497 77945 81096 49909 52424 86768 51821 71158 13409 54618 20854 71310 16199 61506 79412 82965 44247 13323 41075 71631 82277 12150 30851 68541 17843 51571 99232 28460 67894 36989 61264 12504 30337 30934 60607 95947 60598 23378 58593 01037 73185 27046 48295 54806 68252 97732 93587 71883 83156 79605 93206 62310 69028 75530 69813 64350 92329 42371 84059 02300 61413 11312 73646 69306 78096 33166 17388 35174 14207 48684 24276 79183 13162 83874 47538 47896 16520 70309 23705 37975 15546 90443 36669 03991 27776 47918 06748 91238 98577 62883 04750 93547 27712 92301 91032 36093 20898 75266 79565 83214 66375 03311 26995 71220 36464 15726 46709 66206 14129 19865 47891 46864 44543 36461 99590 12297 11646 69941 19782 14831 39714 03732 89430 17826 19913 20579 91548 78490 61870 47859 75262 55693 70229 27885 44876 42774 46216 13228 73930 25360 14204 87023 44268 64176 73270 08285 10095 02854 73763 82222 87040 00753 18863 55542 66225 90762 91143 36773 53318 62123 04135 41570 32604 68235 78891 63030 56042 59470 45543 67004 57329 40985 69870 12408 90963 55536 04855 96540 96307 91288 67253 25387 86647 14628 39149 08940 63259 27981 94526 81507 54469 52617 50820 47024 79718 36466 45488 49371 38620 86932 37571 67679 25029 28704 34251 36646 66101 86569 42421 91851 86352 93222 45239 40061 96727 22083 03699 54549 08657 45107 83187 95405 73125 15595 05048 54847 44726 76010 23145 27534 70734 90786 25424 05879 05157 04143 60474 00362 47806 22899 89093 84842 08356 24282 60847 66868 95406 88742 15636 82996 30544 57765 10252 19094 87410 16684 69945 55663 55756 02492 64986 38143 30509 36656 12226 72228 25836 82927 01662 44180 14203 30153 47997 66138 90442 00093 67203 46435 60808 80230 78086 84904 57046 81580 28845 93198 75451 21508 48637 40097

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 10/1/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.