Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
88471 12488 48072 37164 26107 59371 53054 10328 67285 78831 90695 34344 09423 34863 00259 97669 68396 36093 87122 90423 55099 06085 11839 37197 77010 78659 04199 54866 64749 18201 02296 35405 23644 64976 16584 53698 10294 05441 18945 00351 34129 67555 56748 39507 83973 41096 91913 91654 79607 22968 64973 41442 48332 87519 84138 70494 26533 81849 39356 15217 86235 46126 41374 49617 86674 58895 85804 93108 50854 07395 42184 43329 67111 82867 68039 33952 15676 00869 47946 17498 20236 46586 57594 73149 24500 45149 52849 39558 93755 56938 83814 72663 41437 97903 33894 28501 80685 84870 83858 71019 00911 05858 00897 04885 69356 15391 52695 33304 57658 54806 46484 40829 93410 97573 93111 01170 36727 19601 96095 10013 81803 94552 65699 42829 83479 14157 57982 37683 08803 33525 38869 03056 13589 41455 73209 50646 43988 55751 38840 53189 63043 43534 65653 27269 02253 66553 99648 41129 38139 51499 92003 47485 93801 85315 13136 41339 65488 35514 91762 42788 74152 95486 78963 04843 42015 54810 37244 46235 94133 94573 54600 09231 84956 07677 83576 42445 49889 44151 05330 08652 81860 81468 18697 17599 32875 19853 54249 83819 40587 02599 13360 09441 79857 61377 32265 92007 39313 86549 71128 57279 22916 22483 28099 17055 76523 87860 78379 51981 39445 20992 38283 19363 21015 50133 54302 85979 02148 88790 17164 85893 61903 56036 00899 03267 29044 21824 26900 80172 58608 77297 52985 49402 33462 30104 87462 92286 90868 24708 28187 21503 74045 87701 26632 88887 08731 98120 76943 18251 04747 82752 30006 63188 82559 36451 32507 89891 24837 67452 90993 84962 53025 67679 60941 88229 28895 08062 60814 50550 81116 58845 11125 16634 56813 34904 98501 32850 98131 66053 64746 80039 43796 92363 20900 31327 55680 84468 86306 34937 70362 88885 52670 22004 75689 98320 73121 39385 12341 46982 76280 07471 00393 30898 05317 03002 90875 53225 82015 66877 42340 94558 95834 36969 22420 08248 17971 05935 34393 40713 40423 04031 68743 76750 40054 06922 79725 09844 67650 68495 86925 37489 61986 78674 01823 81491 88890 46229 79357 33288 05301 06592 94484 24258 48334 54666 43745 21033 49343 02639 71822 45811 72983 62798 23106 21669 81271 55340 18258 42877 22652 41184 55771 70208 46056 79784 38531 51249 39967 11942 25382 65720 96481 67620 07688 95780 00369 98754 10894 21342 43142 37062 21091 40386 62110 76863 36575 14270 04446 82885 44414 38044 16252 23078 22005 35764 56615 26427 63642 80797 36675 65765 32076 41146 83682 65587 35076 49748 30066 34859 26994 99801 27493 24830 35326 65063 85929 11851 12276 45176 37705 05181 11316 35970 26577 79800 88752 24781 21789 34226 30282 10761 57137 73324 02564 50189 95029 16118 29774 26788 15549 28605 95169 47034 30520 81568 67652 60468 22565 33387 53333 05013 09171 37852 72090 77280 31750 76977 59136 27886 69702 18808 91576 81764 79479 00243 39971 83475 58646 34837 44906 67524 34943 45618 18544 53666 80349 22900 71194 67226 50144 07095 62871 84405 46970 96525 79862 02598 09896 80232 36283 35702 28479 95797 00647 34432 81826 12147 47423 31630 02659 37369 33598 12581 66374 51523 00244 10323 05106 64453 99076 25961 46790 98602 44016 73978 79227 96823 87755 52550 39141 55192 23318 38856 26245 80819 10622 09390 42303 74662 28043 85278 55192 39340 48975 02584 87965 11944 43395 07629 32913 21849 04425 77298 90629 73531 99892 64357 34068 54373 48896 67761 97610 67481 23365 27971 91126 89497 74625 47263 39035 53412 84956 35044 44371 56374 44161 78159 77842 92506 51121 36210 91898 10716 40364 61864 59785 97508 33625 46166 39616 84798 16409 88856 63428 82724 39551 93673 51246 37458 45782 88677 50146 14022 21289 71553 98320 04097 72281 79930 14131 58836 26546 86690 10184 46677 60019 20281 32384 36158 48339 10031 23997 03725 43419 56459 14719 66546 74999 26587 34730 40326 77216 74255 53763 22118 40166 85430 45164 98133 86461 48522 74956 76557 72798 49694 15897 45358 16515 93176 86550 55106 47160 46577 15337 26777 83050 11197 29608 84572 32834 17339 69703 13727 22055 44623 28009 43324 44712 67301 13030 54108 39826 24561 38442 11294 92999 15848 37162 22384 62976 21174 00408 19977 33212 46429 41759 69580 88429 93693 86222 02427 16182 56552 84291 73284 33421 40407 51011 43266 38052 07789 30040 87646 85500 48671 82714 28674 90275 75777 02104 93380 52529 44900 52083 96395 09621 00211 31389 47760 12680 44572 62684 85737 28168 34851 06617 34624 64441 02230 00892 87568 23310 97521 24321 14373 76609 61477 85897 94319 67752 20104 38847 73970 38297 04977 19701 49986 79511 98548 12353 76940 08928 04461 37119 00125 71917 42863 64808 13371 68239 70719 55778 41855 03613 27121 23998 49913 66278 03604 26116 73857 28554 39456 75517 79780 73406 42033 81387 46376 46007 32067 12774 72746 30298 13984 87654 11218 50553 71212 86989 25150 97940 86497 93794 71752 82085 87214 57195 09892 07631 15678 81497 32911 75806 24458 40239 26435 10981 96691 15264 51188 12235 91391 60778 50804 29916 13765 92411 84639 67202 10523 01283 85587 06670 90191 93065 42885 61850 68425 52038 09934 53793 38323 30163 37106 12633 65734 61138 29559 04147 09576 99460 30048 81320 67146 84491 26737 60905 44430 29518 86015 24989 51420 35817 10305 47553 22425 31715 20878 46035 61380 36651 65665 57891 12164 50241 52069 42161 53909 66338 04778 06029 21314 12097 48580 56385 49956 12036 16171 76391 46604 77098 80970 27039 84530 18715 14931 73715 23823 87871 71357 37763 56702 39160 92709 73047 77827 19855 43422 67513 79609 83965 67717 69751 72530 31302 72411 40558 30447 71539 34731 29500 60911 13277 35129 76476 00476 78103 15089 38279 35012 39656 59946 40160 45018 87689 06691 52389 75936 17130 76793 91816 33458 42144 34001 48439 03848 35199 67164 36961 99244 91126 98043 73355 27978 16179 14117 76426 89884 42105 26405 94372 96616 65197 52270 56352 16952 10364 23238 49040 47116 20191 17805 18194 06082 69000 19254 95218 55894 01914 98466 48722 46971 98920 21730 61083 88428 63930 83559 30013 43380 38845 64502 95119 49259 42617 13955 89462 63129 35309 57972 16125 31992 07163 32083 49773 88105 92657 39102 63213 69292 09571 31940 78963 64254 23047 21418 45807 82887 34655 09080

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/9/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.