Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
25107 57927 20715 67357 66169 22264 90131 96826 89601 41447 89149 55072 73972 36016 87402 39437 08497 94573 50327 59866 44599 19105 03223 46710 72469 95284 20315 83546 22631 87791 38815 64983 92504 60620 97988 79481 97961 22396 03211 17157 49899 96685 15037 02602 55794 17306 63257 52694 46267 48645 85963 59404 26647 30968 93611 97619 53532 50729 58081 57944 36351 35890 26743 04521 63929 76228 61517 57840 56047 68647 02937 02550 40007 87494 59211 20274 52192 79871 20288 47420 64628 85945 96916 57991 36552 84261 84706 71404 90966 62058 53195 85296 16208 10577 59909 33341 92507 45375 89426 68060 43552 51640 17433 68633 13050 54500 99797 73713 66289 14336 86622 39240 16705 47097 61311 21250 77438 69611 04634 83690 37898 69896 83783 31228 65328 02476 66440 67069 31364 08688 59839 75765 63601 62002 74824 31028 22152 38326 14919 28544 01212 11325 90382 43781 55623 72727 57274 14807 52431 77641 81520 50102 47452 14868 27970 61363 86835 02211 74461 21329 33624 06791 50882 46581 19318 90357 03236 05362 20438 79599 82701 50390 60086 61463 59693 76666 34507 03459 62929 04287 64655 98977 43489 86264 72752 37598 63880 41328 83855 00408 12095 11746 52412 80309 40680 46131 13830 27330 30794 07260 61035 18943 81270 04879 46034 55376 22682 53521 06481 79918 56402 55315 17235 24243 18666 07803 66925 78713 69639 36747 59513 87693 07469 53945 40854 69866 07358 40043 50260 63546 85622 52346 97065 96984 88750 57634 62183 83688 07472 89970 24671 42731 15816 33516 13297 44065 35177 30343 83095 78836 23371 13245 16933 54689 88707 63551 52074 16089 29041 93939 31735 89630 95846 56246 81656 54346 83267 74281 11656 37024 42189 01640 42202 32520 19299 04515 55965 49068 21145 69508 74387 78592 03202 36447 59242 92022 83934 56190 39197 59602 83854 73446 61378 96208 89590 34584 67931 31654 42944 20444 97580 06010 54958 04154 12199 89913 44973 33936 48365 29877 04696 40925 93926 18608 87257 71978 89563 90317 21276 47485 55349 41030 49922 44188 42316 73903 94979 02985 09015 69533 45907 61749 23079 81270 73903 13138 87787 55533 70965 87405 93621 77116 13955 60218 94837 39507 53660 85463 11021 40199 28856 53063 53654 00998 05369 71791 77672 13342 40139 77075 58034 08609 70282 63821 91279 53430 27150 44216 22090 70005 75400 30547 94859 81411 77048 43011 30246 81916 80537 42527 26743 32293 34801 88549 87237 80131 28322 21879 70572 05149 53195 72479 68113 89506 94193 92284 05303 13114 42824 13014 68234 73955 36402 28987 55203 33386 22098 04931 53276 86457 46013 08795 39852 57223 67236 69566 09223 19054 96904 60077 24142 39949 62271 04821 92376 52849 95764 12764 68278 50948 49050 35157 79345 08007 32096 48350 77779 23667 77231 61601 17053 93758 28212 49893 53473 05616 54284 11741 72738 58392 89241 52011 41505 08368 95493 89726 83949 39263 53122 90885 83328 57556 73953 26270 08545 12787 40607 54261 65711 42879 70572 28648 74703 44443 05260 31444 70733 68096 24072 30698 30907 38771 83459 63305 25787 01029 80985 42820 95956 89374 44392 92273 53578 23563 45657 01978 08962 28920 40061 12344 22124 81646 30247 21696 79349 79136 55282 19075 94755 35287 04724 42062 36853 00814 57681 59584 80113 08559 46873 79727 81523 43806 47697 82553 82153 39595 92288 77905 33720 97030 08582 88226 50144 30594 84379 56369 84118 38463 56402 78410 28665 97816 24365 61458 43703 85147 90032 06474 07608 21581 21281 16073 93774 43185 41163 27349 72179 96277 41971 69677 35943 57743 24296 47530 52895 80348 61094 48294 42133 63049 86746 75074 75587 46306 11121 04512 04581 32395 58639 69599 11397 30722 32334 67483 85835 28134 02916 92287 26780 84232 22830 92918 68757 51683 65327 55882 33503 21533 88517 13094 06521 93519 24438 74692 38647 71383 93116 86848 72613 83184 41626 14584 94605 26607 08159 49581 10831 39280 11079 42991 49081 94087 62992 63255 85287 19476 09801 78907 95092 44773 94774 66395 30406 70497 47604 42889 20970 63672 98475 24091 00922 78137 17117 07055 60357 99859 76878 77992 21886 17248 43779 45087 42207 16467 90580 96311 38658 01746 35842 82230 40788 40693 07988 23823 66913 34610 34369 45290 25681 13798 55323 31866 42636 57880 63239 12636 11777 41104 66618 68342 72126 02661 79140 64200 09283 41996 33720 07711 81995 39119 21575 31476 73715 99920 56285 01001 69167 26481 62857 47520 55904 12386 91786 25799 50877 63039 58115 96952 51992 40968 05504 36255 14675 36146 95287 65954 53435 61299 20536 13082 68422 72219 45125 92269 96999 13077 67791 13556 90293 86736 11194 15204 14765 50061 35987 21514 78772 34237 79871 25629 84126 90075 21660 97357 02659 58327 70345 15975 77786 65002 79155 28047 51066 41672 84618 30235 13764 70790 70629 77111 83416 55999 57505 13968 05389 17448 16054 34636 79445 12101 06632 64291 11303 79050 43212 67272 89203 09830 82440 79887 85463 43729 37700 68232 83050 88102 18179 11000 27135 63683 92925 07292 01661 74897 79914 09435 30900 05172 60109 80790 06021 37254 16523 78564 36650 98518 98284 61625 27431 31278 09695 23316 79590 88105 24297 49262 17500 52135 23931 00187 40238 82382 62805 19724 98153 84053 56547 67232 94424 03858 96279 75601 11626 50323 87669 34072 63291 39104 15002 96043 70468 63298 30237 11887 63292 88756 67070 86761 07541 74396 80002 63422 56198 17512 08392 30033 26017 24093 65529 52983 99086 04130 52687 34695 49384 91931 98195 96440 94350 91434 21490 86148 71440 46515 22189 11224 39695 36307 94146 96355 06297 95509 64514 66329 78138 59697 57812 53842 38379 35642 84984 32313 48010 96615 57461 73696 72421 02705 26225 31293 32953 46131 45874 47567 83472 21552 63678 86953 11923 21382 33648 93669 66895 56099 55594 74535 09186 99563 39191 06777 88362 59324 93038 70847 44322 71936 38723 08229 33860 23269 49886 04257 82226 93822 16278 95925 59688 29036 32828 04698 83100 34606 13702 94328 42458 96792 31366 53663 52464 27735 80652 04463 29092 35766 67815 34210 91147 20719 24600 53919 86828 94248 47301 80956 45292 25131 60828 46846 53214 09591 07764 30085 56354 66604 62432 13956 86112 58213 69956 69340 11099 34837 10321 62526 13695 05591 87441 88027 91610 33590 43216 26392 84450 56266 96596 27016 25277 30683 07648 15955

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 3/24/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.