Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
67721 81873 24762 33811 12273 03809 17181 06870 67143 42056 18872 77505 53113 15516 29377 78339 78565 80298 36617 76859 47288 06282 87204 64477 91295 78680 81755 70593 28635 24596 95204 01659 46202 64593 22111 05240 07554 89254 46979 59077 85718 60744 39567 85147 21008 39370 75197 88731 03836 35149 80072 22471 82523 84366 01585 75436 96114 51139 03634 87182 32187 53980 86934 86819 09669 17357 34328 57065 86649 48259 81099 23319 93185 37756 10286 67715 89123 87565 72994 68189 46905 61606 33707 62540 59384 62572 40599 37493 72636 33486 20850 42761 43770 84267 00955 30108 23746 43289 52038 17411 65182 33948 60165 77723 55169 76220 21655 53336 73082 13226 63395 94841 73397 62795 88148 25193 93496 94025 44873 28775 86487 28846 24028 65454 79012 68583 77891 09652 54059 45516 65866 14402 58779 99446 24802 00413 37294 79258 64298 70133 88511 69478 87022 46809 48936 41841 34020 38554 00484 31851 55030 27405 03293 40344 03793 83387 53535 60052 58367 03577 66232 27161 66438 76164 83064 97879 15635 69514 05186 49996 28841 46232 51035 09445 84502 02220 39149 01867 61948 30748 95973 29173 11696 11508 88677 71104 50770 24683 82966 11799 83008 90006 25890 91350 44378 30821 53663 82372 73290 63152 24469 91560 05908 09757 76279 86254 96460 39198 09659 46000 62556 29900 95588 39117 55496 59210 08266 24253 55583 17469 82928 76950 92438 47064 98659 41209 90311 06499 86200 06049 38391 59450 60770 07074 86124 88834 79867 53028 63520 35869 26092 77365 26470 64134 14954 14809 27054 48636 27684 02913 08859 89869 69048 08629 27284 52878 50163 79861 94862 31322 96301 22036 51564 36535 79711 99663 60115 11589 77425 62893 26308 70357 54073 99086 44315 61577 69696 09372 66997 57911 12555 10212 01221 70008 56951 59961 28170 85572 46027 10432 48656 33416 99590 83457 53432 72530 46919 72452 18505 06144 84578 68974 25449 20788 59227 14289 06715 50353 75439 75933 15948 65159 28506 49273 23295 86012 62260 84071 35721 23270 51877 36047 42319 40905 11693 43438 84622 45562 28019 28566 51920 00627 16950 24395 01567 65286 07179 26098 04296 58587 47807 67615 14533 48506 41161 23222 65707 66005 00602 34085 90562 44099 33337 59831 66474 81915 48234 55104 85758 33755 88636 71131 50984 23161 90168 82283 95287 81976 63553 37638 27682 14404 02427 37545 03377 86076 16146 35183 19080 38112 87601 63128 33318 26182 56032 84909 11748 84570 24839 71579 97466 15234 94394 03270 06322 01873 19855 95761 47235 48984 93976 52035 67500 45929 54923 38847 23104 55995 19084 88283 74040 30458 38882 24323 04615 47645 85588 14406 68765 76996 57132 45989 60370 68124 10919 28110 08560 64885 21636 17955 98035 44434 64071 72413 14373 81286 20920 24646 14340 36388 15601 85645 21212 71169 70070 70797 45076 86614 87629 51447 28150 87317 60739 31458 15095 70551 03835 48776 48323 40325 11138 01990 88313 46451 39464 01898 58926 48602 16042 48067 17711 05379 71323 30394 51221 88369 96791 55674 95327 21211 27780 99157 80528 43659 51284 81112 02266 00638 38768 68391 16234 56316 03984 00991 58694 33161 85780 43614 91785 76001 55916 62235 73839 41094 51873 25657 54691 10183 34669 32080 95993 29564 71667 60661 16525 74146 44392 48075 62509 36512 81342 90082 02920 40985 15800 68082 49802 82688 68644 00687 03575 91608 56166 20275 23352 21657 22878 74557 22249 64737 99329 53139 87699 89797 84914 39083 26765 06904 55689 85473 36448 56296 97183 16972 99006 22455 62210 56390 02263 73157 53681 76241 84921 23548 32416 75312 06874 25195 49962 80219 44519 80154 06396 71976 11071 80035 33146 37550 01872 70057 00800 46431 64708 38117 51916 52188 95116 28851 58840 19038 56701 82694 06515 73401 26447 99946 00293 80471 65029 29830 98750 45770 12125 84561 71496 41716 06732 78402 81989 59186 32473 91731 95349 84073 87914 60099 11165 98854 81875 88300 21315 09152 53742 89424 92772 95293 18779 48927 75421 88877 38443 13690 34867 74333 15694 06082 10252 15485 15308 63025 97067 07115 09192 00050 54961 51524 46692 00367 40556 60096 49909 28925 65260 79857 34010 71470 78078 45042 52541 98616 73424 53655 67741 54898 23938 69034 45849 72843 38291 46407 77425 12027 44006 84464 22655 23140 95262 01911 81666 37047 05714 39037 89842 78852 06300 84277 38131 06959 28056 25772 18360 77138 09929 27931 93547 31580 31588 32997 93216 12968 71238 87608 33706 03534 88430 94356 63485 89125 31877 88357 33462 48262 72263 38804 92300 66206 60059 75539 06729 74016 08332 40608 06859 12617 00559 64828 56488 21860 23442 69348 48421 54581 24716 92211 24778 15671 95964 39918 22309 26131 80430 63987 42703 12139 05829 62521 47907 19111 42163 06766 80430 50765 84530 92676 08663 33180 60941 17473 97187 03864 65126 81212 02087 25810 14352 13344 91264 26563 32234 24273 89750 62282 56546 81927 50016 06801 72036 13313 47288 65693 68236 31084 99859 15331 22277 85100 14398 66951 06698 38989 56270 55717 22263 71714 44840 54777 55770 04129 73791 14335 62864 50547 56435 25704 75851 95301 96026 10375 36510 94305 81069 34077 53905 01618 05640 45840 87196 21006 14689 42055 53457 82503 74362 55543 60480 43978 67305 69609 64595 17693 12983 57111 53479 21866 12988 44521 53969 57235 21356 00985 64875 08623 39875 52388 14793 71493 38398 20416 44914 03518 00161 86617 16841 01139 92087 81468 45400 01130 60107 98430 56452 07160 49464 33018 69704 41353 50035 46859 06526 20854 66633 56756 22758 59391 14329 48750 66526 93834 38759 17184 61054 35761 61438 28762 12477 48022 50072 11616 42650 46295 13870 69365 46967 25655 23861 20179 77165 12134 58199 60842 49146 39282 72481 55813 75781 49733 95058 51290 24728 21765 47348 14270 01242 20861 89146 96615 55988 76277 88940 24113 17854 82597 19221 10540 51763 26304 76798 96721 41487 37334 28107 14596 97455 65645 79526 76282 89572 82777 72687 88131 05025 08412 04789 89798 31103 61943 73909 18301 63000 39029 49317 97084 36637 13162 66784 50078 86467 62231 48900 40767 28293 20078 50382 36246 67077 53068 28391 96286 29754 61645 37840 87398 23042 06900 51708 21893 16262 62131 06353 21945 49139 89403 71827 08653 64624 41115 47183 16106 66704 86561 80791 30443 03210 63491 15651 53915 73638 54674 59703 93952

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 9/22/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.