Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
42693 47596 68183 44282 71153 18781 09924 78165 17186 62640 57473 23139 44396 19608 95773 05628 29767 89985 30176 90822 33974 22994 19258 84246 96696 30850 32629 58318 56927 27816 33747 03912 98294 94270 87732 06924 19360 65763 94173 49831 28946 47089 44948 38253 66437 51338 07030 52520 47099 63966 30303 24229 32388 31854 80374 37809 25264 77371 96385 57087 90504 37439 73825 76842 00013 27589 72344 99376 03138 31032 48564 36072 21979 12714 13893 33958 71705 58384 17335 27268 05862 38655 53307 14007 86686 98062 94446 57510 80420 69132 49424 13009 77620 11441 45764 79190 38475 75679 37645 74762 63112 92711 38722 40014 86913 87641 79932 63379 00826 18874 92313 32998 96680 42177 14812 13282 37493 99744 27096 46474 52787 34257 07370 79209 58902 27948 15188 14083 04305 66664 99260 86208 39907 28926 30271 64781 14370 99995 58692 79640 94425 10930 97589 72835 10179 02657 30442 75180 25433 15024 43950 07825 32991 00871 85849 08813 74973 65085 47722 84644 88129 28670 72812 86838 74149 17803 88837 13497 94977 77900 65796 35868 93126 12679 98788 49902 36983 48219 15824 52824 91132 22028 10633 44689 11657 97099 00485 54945 66460 00977 08991 94000 80571 89821 73929 29778 06462 37465 80044 89290 19359 49482 16869 85186 37554 02245 61535 67327 67719 06990 86581 99341 75215 98881 92771 60190 79410 51066 66902 70730 73986 13749 64621 45274 72256 78243 18234 68153 77471 66039 69518 95282 78140 42866 27538 80720 68335 57754 51454 28232 93009 07094 58340 67855 18307 23707 55988 57455 26875 90898 00728 09294 38178 81525 80237 41592 53809 22060 21352 55087 27801 81649 22883 34599 61945 86177 13426 75595 26093 57330 34172 35744 03481 76656 46724 11490 61033 74632 65908 39607 44677 44719 17585 23761 99660 82432 21462 86079 15855 49398 98909 43706 98078 62420 05765 10367 61400 07539 90158 22935 51455 79098 75312 92988 89758 43801 67359 83373 44017 29780 88158 09771 23441 40654 33099 67257 99056 94593 53923 81860 49019 88381 66529 87134 28926 86477 83789 25710 67129 35079 73361 75866 85043 01184 40500 03088 42466 36654 35871 36628 07885 67277 88362 71074 53791 06829 62896 92905 76993 96135 43245 32061 43927 67135 39838 38497 60971 31946 22579 83753 69757 96920 78658 87514 67484 01712 95361 69169 52230 83340 67883 24380 93262 65248 32145 26639 26354 71367 22600 53832 74095 65181 55051 39805 91203 13785 34460 50919 34837 76950 87761 87621 59910 21188 21675 11002 39403 58808 05519 94357 09674 11984 79021 99754 40773 01818 85132 79592 31754 62395 27836 03163 30987 79857 54968 08218 81471 56455 66021 77526 91149 99616 44960 40440 28212 36007 18037 99456 41424 50595 36601 81776 05424 50711 84911 15875 91042 55111 12948 33057 60615 08038 94230 94021 88294 18288 08621 40424 05359 23270 50145 71443 70532 78067 59800 45334 65289 69503 83368 06000 14173 55201 54230 34552 30104 27646 01176 25868 84695 03252 81218 90160 03563 36419 37406 79533 86640 58599 81633 39550 53489 42356 02458 85794 13611 90430 97907 05428 61765 49801 33295 83761 98274 50748 24033 55809 74340 70914 43442 82859 62358 24368 55568 54026 51224 75665 72989 12824 66652 78915 39631 08720 16487 41837 38584 73704 61012 14829 24905 23847 08266 05026 83441 85862 34353 15363 11633 48673 28757 08640 27335 39971 64653 96581 01621 27780 94221 53900 16604 47017 68954 57360 48240 51059 84979 49839 74148 88299 53359 29389 06420 03716 95416 63303 49431 65429 63034 27171 82656 16268 83980 68949 68478 50330 32208 98019 85004 14546 23180 99249 83876 35239 34171 72061 73084 69692 49588 94486 24776 82704 31278 12236 08077 48160 13840 52756 46892 75587 24943 64296 02727 61720 30633 79966 82497 67062 05647 06805 71341 17450 28726 39838 90431 30614 02928 01141 79788 67743 00941 03904 06093 10044 35393 41493 95500 60305 54164 01511 91447 69461 60705 04863 37470 88153 59342 69816 85017 43290 25594 01065 26257 39616 01484 03791 51893 86268 15851 22726 33977 48339 29662 06218 33723 23443 06329 95287 34314 43275 07012 37693 98721 00176 10944 26998 52512 98692 60731 66624 91663 32141 32675 58924 15376 84171 32079 19233 83887 55325 13563 14942 01277 14603 26377 29552 23292 76026 84711 51741 90146 00195 63010 89427 84341 20856 16285 08824 13476 96463 25426 98515 18061 86739 67515 58506 04325 54238 11135 14289 02038 90910 36690 55912 47312 69662 81709 02031 90424 20919 11164 88982 28619 34190 12782 84837 63930 84627 17354 28469 85989 84590 44052 93615 79834 60208 70738 77936 58729 52943 29279 17085 21971 46149 25857 23762 37708 16639 86284 51781 50744 11247 26314 85134 15358 48386 46954 52049 53114 44614 54776 64056 35674 66199 07234 80047 92608 05675 82971 95341 44211 83410 77134 55745 59312 74165 21689 96616 38089 58661 30728 06927 19878 00134 70785 18322 15989 45906 56150 19188 67518 53942 69175 93710 28157 44414 05596 85937 72008 76264 44837 88844 26397 48765 45327 58394 29685 28086 64812 52601 14080 98851 05665 95593 13450 40706 85203 66671 96137 29877 30995 14378 22766 65736 01177 95556 29062 22361 29764 39410 33659 25100 96962 36570 70913 52133 24481 53157 48715 61034 95849 69841 31307 40335 01720 45904 47086 86087 10192 08307 21426 03423 62115 65746 34485 33121 91406 47720 04016 03164 70362 68591 93186 05308 79971 16646 43382 96638 05223 68160 32028 26136 55426 26460 55394 86238 09518 85986 36411 89403 86377 21353 57482 69669 40134 01415 18298 09221 80488 28326 18643 89949 18016 01605 66214 70013 34488 07195 09431 85407 78176 31527 95247 76516 84169 00584 51966 39686 19685 43963 97049 03779 54383 83936 69930 31741 55677 49511 89830 47162 09047 15500 38567 85840 63351 66577 68368 72340 01139 86342 34683 21562 33966 71383 53999 65299 22701 70339 86649 03802 22844 47961 44625 82339 54836 74179 24394 92762 99370 38159 64708 00069 17709 87366 29414 93962 96992 91632 15273 65414 20550 32213 84765 08231 63218 15853 23908 45611 11649 13848 25067 81712 09622 26105 94765 78208 28360 70209 86500 55859 61838 95483 58555 21067 47098 22049 56809 17441 09563 04895 22554 02361 33344 22933 25301 48537 56557 93063 20600 70576 91636 09237 32845 76541 70643 06519 63093 44512 15580 50150 21872 24156

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 4/17/2021.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.