Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
59684 19455 65357 70760 68974 99813 24598 17085 82855 24600 75946 10917 82731 05857 14524 73136 87210 44005 70319 20033 28673 98157 97243 96120 54830 81429 87198 31946 55287 81254 09133 26906 13107 04694 73114 57057 81372 48752 19382 07926 84746 95686 32415 32327 46038 33318 79993 33173 37764 00350 77259 71284 58710 56678 75780 98204 35493 78699 77615 14013 49124 79625 74371 50139 86574 54802 11268 77167 17329 52013 76203 37658 94962 66796 13812 03958 83686 62756 64530 61007 09925 16877 28657 14160 38869 89833 55416 21992 76043 21305 57022 54113 93865 50287 47738 73981 83209 60403 07941 46716 29971 50219 73185 71908 16628 28555 48261 41433 48800 34797 46260 22265 06817 84209 52638 64288 22276 38248 14276 33109 79606 99874 53543 67870 42634 33863 07360 64060 06139 12122 91261 81329 72423 83997 88453 76299 52869 71589 63886 60377 94505 90065 03306 82570 31565 92971 77327 37291 62054 42545 30484 97180 49307 05029 95304 70909 48556 70980 31363 85998 58487 00584 89351 96629 97809 93971 00133 16456 06811 86522 88813 76417 73926 69186 13795 07548 87295 33789 30848 48796 11329 43352 82166 79830 88271 27396 10428 78855 64756 02261 97870 05422 43380 16415 30336 08244 59255 20766 86348 58005 81577 63980 51166 05176 40187 12784 55852 62824 77131 97288 41328 14426 23227 81292 47446 46684 99622 57600 27042 07333 44360 68333 85007 87956 63941 50238 42342 31797 09885 05008 25225 66571 80294 94587 79072 62280 46415 61485 07601 14023 04199 74093 36891 49808 50871 96992 04450 63368 86486 86266 73271 71969 40492 09819 70899 99226 23296 92680 53493 82913 02825 87321 94887 07778 06086 68968 00654 63354 45733 55913 47167 26769 71623 54828 45662 70565 47388 31075 31302 95505 51987 04020 77238 88387 06277 67346 33671 04856 24571 34365 91915 77218 91200 08330 73461 47252 62079 77749 44038 24022 91267 36694 52676 66689 82529 30119 95766 92324 65902 24166 06129 08722 99252 01484 67070 72212 94841 81537 51447 70471 70889 65918 85732 30336 28134 08661 39071 50618 51396 11554 37349 59910 36141 44453 02252 99406 40041 90590 15328 30708 59537 16892 07054 68643 31404 69286 70891 39069 59308 93019 02354 61697 65376 77964 63070 57893 66753 28938 69842 83500 77164 61009 08711 86643 33482 19814 74020 90546 47285 26868 32473 01344 81420 49876 12202 40892 51568 98050 16826 04584 52803 42416 64515 44158 11157 61129 52053 75513 60181 09786 43899 11523 42507 16738 86251 19845 36413 03403 46106 05734 07385 29575 75326 19855 84675 63744 99699 91096 62871 78401 33001 84381 28452 70352 16057 83479 11357 06036 80807 98822 61544 91830 39368 00314 50550 69367 98092 75143 98061 35844 96634 10595 23466 89339 72012 01868 22427 99121 47670 84879 68436 00963 47539 94085 39379 17454 35103 45286 69101 03312 77457 43444 23966 15696 34372 15496 04418 09519 72359 68160 71549 57762 03729 70754 98654 96783 50656 63006 47801 96632 34239 87866 71388 56363 88567 49321 38710 24346 99779 95203 87514 43581 70126 25005 00573 22008 07038 22694 07237 27822 37179 14521 10002 09784 45517 51835 36073 42533 39383 18895 13922 96902 37532 65683 74854 35224 84210 65714 79568 31653 88210 98855 69721 17468 86942 59129 44489 51391 35489 87534 62131 14899 20675 29853 66547 32532 00123 19465 38849 17214 66318 85160 73915 40555 35674 83953 81957 28173 62591 58890 15080 80000 78521 21868 18847 15598 56028 61442 08840 44471 97852 75641 72224 61375 50973 29779 94308 66634 45670 39267 10106 11450 59586 77427 80906 68217 06789 08302 95823 25833 51837 44473 98370 10012 48837 29866 38017 28597 05509 47568 46751 41872 72251 52639 40643 57875 56198 29925 46409 52712 60285 76867 52970 15867 47312 11319 88018 20513 29003 04356 19577 18830 80072 38088 82564 62314 77282 88474 30356 47088 63511 33133 11346 84219 36811 84154 70513 95025 64475 45916 75976 31394 22093 97890 70565 21089 57621 02462 48377 38067 80441 37738 56343 97789 75421 55360 20786 77531 41983 63318 98988 61698 58158 33761 55751 12137 69658 35811 64957 63450 03928 93376 36134 43303 09218 67961 66017 17742 18638 66481 15109 61506 39227 74075 09247 53335 66010 11915 66161 96288 21063 20022 47040 63051 17576 65077 33091 66252 48915 73234 27102 53774 02683 87931 80008 29064 99785 52705 42450 96451 58488 19002 41337 31453 83487 78991 81413 76093 79963 23377 71815 59210 92648 24212 77636 41772 69890 42707 96489 87188 52709 62049 60072 56622 88865 45206 60723 29303 71919 17746 02989 47841 05296 75648 80188 88534 91345 18111 75968 56688 45405 05371 90872 06922 34864 41512 93900 88486 43224 82276 99073 15570 59163 67880 66992 62619 90598 80825 31403 84645 03746 28711 50760 62536 87187 52045 84785 73374 40927 57060 96035 85745 90461 73522 76457 80049 25834 37547 98959 93818 65703 99408 93966 92024 46404 56353 50987 62392 36009 10415 45174 35714 73391 51223 88887 31162 32286 63818 08255 26598 10358 61463 44739 53888 43257 43456 81695 19216 43683 77942 95936 48394 65453 09728 34294 57174 92556 93093 15182 46563 53221 49599 55161 23135 58977 50908 20496 44343 68718 26592 03722 88830 77763 96945 25207 51744 31917 30797 59712 65049 66538 28323 87957 42838 70598 28862 73181 51645 75744 43724 62703 05759 70360 14002 14489 87535 38632 93391 48711 92705 24609 55992 24311 00696 21266 29131 40562 69936 84566 51169 63632 58171 72523 54314 78148 67774 09264 72435 63753 16062 74093 73871 96674 30604 15550 19251 76283 69536 90478 44297 76658 66873 28082 67643 23147 02821 18992 23647 93930 99091 29329 20200 46581 39208 39763 21541 69632 13829 09576 56071 59134 91051 65728 49161 20220 11724 16918 80969 93667 09765 92642 69250 07461 57472 07263 77170 53355 35830 49067 46116 88435 29832 94332 53512 61683 48786 46382 95628 65535 71628 99658 95395 12450 17236 28775 35217 36466 39743 02587 14782 19768 48847 23248 33877 44246 55126 90277 00198 68060 40348 89616 62165 27203 52785 07699 66732 62063 27528 70506 42200 68982 31794 07635 06033 76825 35242 41358 97664 48538 05287 00683 36315 07709 27406 60422 03801 90137 50461 05249 52352 20387 56999 18764 37418 13359 58575 97555 75484 00846 16061 90261 26883 83099 84954 61633 03609 05386 85695 81601 02128

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 11/14/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.