Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
65609 33590 02222 97346 52666 33381 44965 67775 70407 18072 02147 87463 62638 12498 30514 92426 02557 53311 51360 25030 44322 34292 14594 41798 99607 76663 87800 46229 39172 24399 70300 46604 19419 64542 32218 38804 33957 72514 78540 14119 90166 82428 38180 92061 10757 82399 78036 78180 60335 34861 42061 46871 96963 21876 15320 49189 48724 15445 13053 45664 15282 72828 94738 64108 94445 56847 03156 82434 33730 81204 28449 36463 06922 80793 97186 52739 15638 07013 86423 06341 15891 48076 62768 03697 69648 74327 46442 90393 21400 08549 00343 83990 99716 21282 44104 31832 43812 51129 93162 93862 55109 50074 22816 50433 73800 53792 57290 35121 80407 76963 83798 92535 22350 33581 91604 61134 65503 82272 36085 81036 70761 96600 27793 26833 95601 60385 46521 65401 20645 88013 80360 38714 01220 69749 89765 71655 43925 42050 96618 04831 08189 82875 98288 52385 32837 32002 06695 84805 87651 36335 12373 36742 49931 20221 73530 39818 06061 80762 30115 80440 78068 08125 42875 82613 75187 30856 57423 15752 70422 86192 93295 27496 02109 15374 58017 01518 00478 83962 86166 40338 39218 27141 03431 73137 12036 20039 15678 88569 34222 73039 23011 92573 69208 52090 58833 91184 80136 24018 53914 98350 06416 26842 25446 68740 65291 65085 91111 55558 78397 30087 08142 93355 23330 45315 37385 05845 10201 36678 32362 38712 83207 27841 53333 17426 47188 60532 06358 30054 19191 39860 07362 35075 05032 04626 71195 94188 00861 22633 25694 30130 19720 11002 50748 09483 43110 81482 42360 50492 97550 10764 01708 55871 56143 35791 49207 70623 65134 74076 63576 64847 95477 69009 45894 41550 19395 60169 08667 69465 11943 78643 89890 40859 77571 67333 92109 54347 01684 26268 46480 22702 27209 82920 01839 05673 56154 87517 38758 67791 76171 33349 08611 61187 12120 02088 97634 33401 02631 34096 15989 60196 01664 23740 11827 03371 05075 39703 10349 93570 02177 70296 77871 38101 52302 93773 10882 53740 86365 73641 50111 24553 33424 78973 19588 84700 72245 29722 90706 26253 07863 67031 71284 32007 73147 48549 19627 33290 55357 68738 83595 92779 47714 04193 64657 12313 25955 83948 06960 65699 49901 84790 11391 56535 90017 51576 74633 01011 78975 42537 53237 35732 88218 99601 52677 50521 29518 43694 41417 46241 81543 95064 89970 17599 41420 18583 34963 60963 01292 94068 68200 07175 49887 11589 50722 79361 99076 91780 51870 75745 35438 31158 13351 77461 96819 72429 38295 81365 73901 99802 05321 57849 36757 59304 07600 33653 86420 04091 16915 99677 31439 64760 72726 43793 89449 44662 96230 08658 13727 40213 29425 74527 44757 86210 99173 67066 86793 26141 06260 90162 09422 07496 39464 83740 74125 02085 14610 06569 85839 51343 38638 44080 69521 36648 98663 41177 71711 74634 76040 60049 87093 37498 85422 62982 10057 98317 38827 20172 11264 01361 34700 42539 39206 57403 71972 39538 46771 64030 89125 01969 42801 50962 28256 09796 68662 50358 24136 64953 99798 92131 18276 49159 72299 24260 97986 06734 34463 58105 60440 52404 23356 38716 01738 04120 66378 40146 30968 40868 07820 85766 09270 85480 60433 93575 13895 12450 81988 46514 27271 80745 76835 87777 51064 91615 22472 41125 45243 71409 21101 56199 92136 79387 76196 78829 85500 40530 94062 46351 44580 03355 10397 07916 53170 22726 41859 69806 23679 67668 62623 65741 86191 54179 05948 52197 02529 03040 90735 28718 05317 22633 73096 83223 62040 16746 22908 62326 64110 17394 25384 66643 40930 42624 07628 71107 98949 79332 90203 70280 85733 91075 63693 48664 79023 50879 90260 76017 00796 99060 30215 27663 56333 26029 93572 29803 98276 80106 16617 29832 15694 00337 63468 91647 48144 74301 52637 15963 24734 20924 08592 85622 28184 98294 38322 35908 83891 36471 32898 49861 73990 95300 94035 78585 76417 47222 85654 86564 28971 85092 10448 21972 18377 54984 11441 11988 94348 14010 98549 83108 08648 13126 00149 06457 79154 04953 39636 68099 78919 76580 36986 64355 50235 07384 35321 22110 43693 51839 52468 44130 82249 47329 57526 79370 50283 46961 72426 18291 07666 77376 98490 13169 28817 21564 68001 23410 66770 26675 20760 85862 42235 36830 05649 10123 57657 50938 07197 98863 36287 05504 97138 93127 86235 82442 10977 42652 89538 41891 49548 01181 16224 80024 05584 46770 63367 11862 15271 27107 19157 79085 34818 29820 51961 82847 42013 77791 24381 41587 62790 49468 32323 73841 22790 24179 69053 06056 23924 52443 14267 05401 45934 51282 48145 37580 72956 24536 90421 49645 45086 08172 64439 77809 34936 40600 86223 80256 49201 57983 78532 94956 55223 14551 09926 22476 32548 27913 58830 33796 49493 49368 02594 03114 64707 59221 31556 65668 53732 87092 88104 00539 60569 57230 30742 38471 74238 58826 23146 94681 30340 41324 48234 26669 37622 34736 47222 17035 29538 94952 83690 81287 40810 74052 32645 00657 08992 15621 94581 79913 01036 75063 34543 30168 64846 64906 46190 76697 05850 25123 40856 91747 88554 18440 61613 52352 63112 50649 22335 23141 16884 15921 71758 64154 50998 67119 82545 63654 81916 11109 65345 95940 67993 29074 07862 04157 61042 21825 38909 08111 82896 80117 17477 37081 26968 79955 46794 87630 84818 02914 13390 06419 97712 81446 51159 98022 33184 69195 30418 57730 86602 36308 71974 29374 07729 89750 86185 88132 52282 18613 37023 48339 58502 64432 31133 96306 48708 16495 31901 48127 55865 32157 98513 32496 75146 82152 50018 98515 40491 20905 54389 48510 26176 81844 42592 95841 73368 97716 47639 47717 41691 45893 68658 13005 85792 18693 59951 35047 56897 18684 45061 49469 29377 79003 55828 66996 52311 08664 96459 81260 26046 62874 32585 01619 03762 38342 05324 10965 18035 93597 70347 48537 32395 94292 61938 17734 17893 83525 82055 18930 54662 77148 14397 07281 58481 84076 63461 75543 32333 51606 18609 61881 42973 35726 43129 82683 22487 96428 88295 90371 94855 18018 32435 56218 27516 54434 44989 78153 07927 99554 75571 13580 45127 82510 68035 37188 96300 88001 99536 23763 18336 01604 44592 56003 44397 80088 64146 57325 85474 46724 19631 49685 56954 11604 12029 36384 30182 16944 45935 09884 09021 07404 18622 84621 31417 25398 34099 54814 95960 31404 42178 77281 13446 49283 02533 79250

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 2/24/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 1/22/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.