Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
01895 34650 25539 79160 58182 45206 80613 78709 90224 82016 96380 77817 78666 84391 11153 92800 80813 61665 53185 70147 63445 94751 35983 00587 60625 62708 78619 58150 56514 94303 51048 64229 93185 44570 44412 76643 03430 96377 66359 03697 68580 86986 61353 43250 01312 59616 55988 46773 53463 40005 29297 08413 48842 37975 08069 79054 41044 73989 87159 05383 96263 30721 74801 93948 01100 29612 62919 00224 95382 32435 22442 42674 29969 67859 23616 41813 49569 83009 81315 84267 00551 20030 25355 11840 63755 17649 95805 35573 12308 37736 63301 74807 94434 16871 74359 21249 41267 42901 21684 28028 99663 56506 39487 23766 90015 77761 23794 51631 89061 57697 77761 33407 37702 54865 81984 58554 73810 36898 89815 98268 90042 07074 47671 44549 16653 55877 40348 74258 29309 37562 61334 38182 81898 71715 08119 75097 64343 69816 02512 50828 85414 86803 35950 22317 80542 97634 39810 26678 44631 98847 80725 95266 89870 35127 80894 92734 28545 50865 63393 81100 80853 66720 22492 08809 07713 81186 18963 24792 68578 97149 00395 17531 04252 73453 46507 79123 44696 01462 39457 94339 41845 06622 59159 54690 27419 75022 03594 97485 95735 04959 34118 69900 11523 83501 45784 18035 42731 88045 62643 00976 18346 12886 58068 29863 11200 20772 00057 31949 45788 19475 21550 39661 31074 63346 15743 04665 18312 79882 56396 36930 83848 21284 43149 68784 36943 41028 71834 43984 52578 95417 29786 31774 29270 70150 16156 65950 71884 31886 87225 08921 99443 04798 26715 40769 77946 72146 41101 73318 78174 02833 79926 89191 58509 02967 81111 05875 72740 92427 41269 64782 02880 06426 11016 45312 16977 22069 15284 03918 51928 09918 98636 38163 21287 10556 95575 75788 48084 36147 25858 88772 22632 96999 14809 32395 85343 53130 38629 09299 34537 90824 94712 58553 59261 24198 96957 69714 97091 21765 96077 21890 16957 57994 24916 47800 26944 89872 68758 22843 07113 58472 60640 79153 67309 15507 01669 44666 29974 74900 06327 07182 37961 89342 72789 03423 87345 51858 78236 33105 85238 22365 99161 97991 32597 79239 56689 65958 32040 95874 86886 60060 20660 42247 36071 72586 27831 11480 81131 04130 58028 71401 74831 27647 98635 41108 16125 77517 52759 92530 45476 63611 97041 76993 65159 10348 64472 76778 84580 20762 52199 81685 90586 65562 54347 90598 42777 97196 19822 38045 93822 88911 35130 45759 34765 98820 32186 99246 65345 58960 21127 49341 89303 89356 48127 38775 34697 37085 78207 53736 99214 40336 03047 00431 20482 17476 73802 06649 71382 81107 58909 48325 80364 77135 26905 01098 76755 48826 54237 16880 61074 25876 58074 25414 00342 38465 54120 60835 48401 56326 39428 13237 91216 52806 00209 05236 17199 93926 44648 93525 12512 52445 60715 95445 81384 46925 98978 40544 91426 05791 80415 47137 43936 56391 29225 23874 69218 39063 30646 96298 46894 46198 13759 58408 51212 86296 59308 49226 21362 73036 32510 54351 56791 39335 40866 32532 37507 76409 16974 67221 69402 97838 26343 43141 54557 28629 00206 47847 86556 19276 93328 98289 70802 84824 66825 92373 69825 68932 95972 85525 73597 32934 03014 92253 94844 69902 14986 12710 89358 43709 46517 84255 01309 53093 07647 58017 33562 20716 36640 00458 42981 07228 57793 19934 60751 50330 64252 18257 37682 28838 25823 67259 14528 51742 21785 10355 17297 72270 98701 89103 77560 26952 53233 94770 77772 99682 39953 44890 21575 10777 04153 84832 29118 31044 39665 14357 57364 20841 71664 39184 45407 94140 64489 47552 84781 07586 54448 11781 14774 74565 07636 14837 42741 04263 02748 01891 89415 65728 38884 56885 59223 76936 68371 04093 35592 18849 54569 34683 01268 74482 54687 58281 83625 92962 27592 79530 24980 78591 66627 99659 77900 04912 57416 43037 25524 53765 60685 08744 26865 79357 20066 47128 87129 97319 94918 61367 53028 98769 18131 34038 33086 89378 78945 78671 42962 53430 30759 16318 75750 42883 23947 77111 97301 91436 63666 26828 66534 53586 92670 18453 80744 68695 99125 68742 45919 50050 49418 59779 72050 98928 45974 65546 93445 43654 10063 03481 14041 03668 89615 11040 77716 78586 92034 47263 63602 62261 42010 19334 06397 81848 64327 34144 41680 61865 91684 74853 76218 13255 97498 02454 83285 47451 53725 82333 22969 15434 13666 35834 87489 71802 19784 16822 71503 63825 36513 13241 67427 45513 08074 73682 85738 16678 41283 58941 00296 86993 13369 18587 18650 65059 04782 92516 77356 72463 57008 37522 62282 82845 55380 78857 53929 85956 36892 86788 97737 76725 23009 78169 99401 69317 77482 42995 45181 36200 89161 95970 47217 72205 79805 53067 13842 83586 36895 33091 44889 02090 71449 84240 52011 24010 00830 35673 03988 74256 56563 74064 97042 95411 17146 45172 50149 61798 65861 80399 25352 18540 73588 48355 73070 45624 06617 31420 02417 46963 59463 27303 76509 64456 12671 75612 32780 17055 15639 09408 28290 64826 94422 31774 10044 98008 84549 17375 10297 51080 88834 39019 66875 41822 60187 19222 68478 35377 09431 06769 25001 33312 38109 78278 62842 87686 96301 64761 45214 40105 65434 03187 17461 85792 66095 13044 77367 62641 90844 97904 70470 65289 62026 71980 10375 84171 14584 11695 24067 69587 03870 32241 22219 20761 38459 89141 94511 99905 37963 04814 29938 71285 15839 20135 62124 65278 87207 70999 39636 67436 01656 89882 21292 32550 01064 32406 96479 23713 02404 28899 30461 76380 05560 60960 34695 87432 26139 63017 62142 29239 53282 48896 27577 88720 32480 63377 52906 31410 73382 58763 37476 90516 82610 96436 53388 80988 21571 73424 65809 38572 89271 73960 78286 83882 30126 46050 03056 11453 66772 03030 56359 03812 57884 50130 78755 70535 80981 36038 80430 12312 40245 29462 11513 10008 99330 20690 57384 38727 39173 48157 58993 06874 40812 50003 58167 20216 93193 40638 67925 70947 25985 12306 67789 51749 67392 61643 24099 94855 26967 41243 35323 36110 03422 36220 02370 04036 17441 65769 23904 33894 69495 09731 16654 06743 22650 60151 60728 13509 10386 97848 69928 44040 69402 93970 87056 01176 97433 36560 04233 39804 36064 82117 08209 30928 78537 32163 50675 50725 02569 34799 43573 94611 28161 11271 79417 16304 00412 07532 76595 91884 97330 70805 49689 08857 62648 51146 04785 80216

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 5/25/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.