Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
48578 98593 09236 38995 33403 92872 05132 40100 88706 76110 32983 48855 10513 91475 69530 16290 01979 60751 55671 00958 43703 73398 29279 70492 89034 00612 83011 28168 84390 34393 47122 64471 14567 51602 97278 33656 73052 03026 87367 55308 57338 27440 07312 40909 89231 90672 65883 45397 60168 49661 98511 43727 01529 41522 00100 32441 79944 97609 82839 56221 17612 82577 59014 59459 37612 58444 48822 62814 34210 73653 13181 64780 68181 77135 11547 68243 87114 57375 84720 32047 70725 06467 62664 47556 01176 09183 97313 40215 58378 57033 20387 96115 40312 87329 26204 13553 08337 47244 79491 79594 57502 82878 48200 71639 11862 53320 61314 83979 44787 69707 91669 79366 24275 59293 63756 65569 83269 54505 86543 96940 14962 07009 11280 00975 93115 26773 14317 29878 17368 46127 04912 37122 83553 08828 58047 79010 79005 84118 72239 41244 02875 05794 52352 90479 11444 36264 17412 50892 88433 55613 33415 05740 40320 75662 71143 23926 16645 79035 88978 11560 55330 83219 40709 88521 52988 29626 08349 90020 60234 97656 59946 93162 02003 43761 32396 68511 22855 65506 39256 56649 57294 90632 03552 69740 25077 91116 15601 18093 51527 22239 15811 61724 12847 86643 02506 86918 06431 23397 64729 07792 46176 22058 40060 92859 82796 61733 97426 16588 49135 75144 44913 35966 30476 37687 62582 92066 59859 81497 60278 36601 38387 34510 60443 83494 80546 84525 05930 85436 84508 68267 92814 35452 27454 85449 28207 93459 85879 37835 13065 37833 80908 93302 50009 41968 48605 74903 76128 75841 35290 74930 20800 32574 17850 93974 88497 79995 49049 04991 66604 37202 27844 42361 58228 76124 94695 15955 40010 48087 51878 50192 44940 35371 08799 48106 70168 27779 52304 80406 09816 24192 41996 99539 12791 59138 30540 78755 65599 54353 08984 76164 00155 95339 77064 23804 26596 32934 38522 41700 91096 09869 21416 76929 58676 12329 23433 67680 21016 46524 82200 32320 29270 40243 70601 83451 51878 69418 17083 66978 57374 09692 50974 26170 22206 12974 72792 90720 63543 09007 49561 90809 97089 31928 35119 96170 19897 71831 15435 80150 18177 51330 78918 08769 00116 27119 11730 54789 53684 16539 18103 36769 29447 49138 65645 83134 48383 43231 55655 21234 34694 07468 18437 91407 73614 67391 33613 86041 94228 17002 75431 13640 77277 95319 83081 87880 87979 87945 56009 41679 33834 53626 74226 66252 47442 75815 43621 75182 94312 39235 66276 93473 05674 31441 35775 71620 36297 69383 57521 24668 47294 50967 94044 96276 13940 31619 35316 47777 58483 25847 94063 72245 07955 33803 26076 33553 76986 92848 75528 30437 75616 54111 45281 85560 42109 84052 92200 59571 00762 91028 47470 90174 44721 76850 61901 56182 43792 13353 76247 66585 77254 43948 16515 74614 91670 10197 14279 16796 83702 03363 51991 77025 07921 40984 33294 75620 09622 68426 78337 83388 82634 85451 44083 60685 52133 97778 69626 21483 82457 93646 46500 22430 09916 45375 13993 76909 00605 35931 79460 94106 33216 10485 63634 43072 06853 52979 70942 41780 73840 87687 84811 71193 97538 05777 87987 14326 35155 16875 07844 20306 45561 25624 86698 93435 22095 33252 77119 07256 50385 64131 62243 43609 91153 17338 01083 56701 88035 43221 98848 62162 00386 44961 02246 51113 61099 05132 19805 29222 59413 37265 67180 80773 48728 62412 37468 57727 79416 10705 96520 93779 56634 47922 03253 43429 23138 27047 54963 46038 67093 64836 57638 14894 54887 43373 21269 51271 88943 36640 80164 83497 90532 62075 38260 31012 07584 57134 39435 93429 47503 80857 62821 64605 34978 40428 43116 71692 94796 42738 15898 39209 59653 70947 87937 78099 02967 86047 32503 99795 96694 53426 09688 55278 94135 94428 11707 99145 37753 62916 33222 78668 91982 46835 66645 47857 01042 94776 22457 06522 71752 67535 74515 64337 81338 14680 30369 29903 10251 76110 26575 24807 99977 08616 49001 22689 35849 37450 78148 13300 54860 32882 59456 91568 78477 11763 98620 71661 70451 64089 81900 26044 19630 04564 21436 49548 47774 49161 25561 48430 42364 16684 94108 54434 14417 55334 38730 63854 81298 94267 28207 01599 74531 20158 58761 10254 72614 78766 49368 64141 58829 01493 62070 08384 04056 56949 47289 22968 74586 27513 14136 11806 64931 10897 25728 16800 55640 46706 19499 56899 96108 68002 52509 92170 12391 77868 71763 12852 40018 50969 09516 53424 81802 60113 03593 31666 90656 27816 42697 12720 77399 02863 36720 98156 43578 61872 12060 40030 39270 35855 31933 79949 45903 61781 41679 13135 84064 59138 39085 77485 46313 31497 69689 67633 54995 93073 47094 74015 45053 20289 98285 46931 71838 28335 33937 85604 43928 72735 43729 52249 80932 75908 16656 11129 96308 78729 86343 92622 05176 17093 01354 82279 57125 23476 20511 34894 94033 53500 33197 13557 32872 37493 04680 53724 73529 57053 46414 52276 31607 46611 11360 81583 96251 19989 14295 28564 12949 21971 77124 58753 91350 04857 99195 05360 38078 30030 52607 83332 14540 94517 02528 28416 19740 82554 52505 61225 98095 42144 14774 76297 72241 86624 05578 56156 00852 21224 65474 10379 61450 94632 04649 39656 58214 75556 73231 24852 54798 54284 56603 41071 32142 69250 95712 96718 71281 58596 32386 97560 61162 36732 79643 35791 31454 95900 17008 04093 10361 32737 10818 34699 07436 99837 59542 63454 21391 82314 64089 18880 72910 99363 23123 36237 62464 30824 53372 96587 53119 68745 34947 90852 78355 93942 81646 08884 74870 77564 36275 53519 40402 07653 90952 79648 16533 40711 32428 58272 96506 78257 12393 65569 58038 68393 42792 96955 21130 32364 16136 06148 30880 16125 50814 69228 65299 66899 61408 73700 68116 34740 54003 32560 06600 99098 46501 23352 54365 20379 13932 52236 99185 16509 58769 43044 75808 64497 06236 51350 23766 26995 24627 03527 70190 03862 70612 60811 37619 08728 59554 08365 76816 70554 60819 69340 24581 60196 18090 43937 86557 41966 94680 73470 45052 50196 43841 29430 91844 90802 04080 27546 85997 67841 19470 66848 36672 35080 84965 93728 10940 72554 16708 91004 66595 88131 47346 91984 09968 44072 46344 19526 78735 08597 65295 50100 49733 32443 08234 02853 71772 50432 26947 53670 23448 08029 41291 74236 95951 12905 84499 96102 00887 11503 73496 99742 03079 90595

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 2/17/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 1/22/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.